Share’s Management System

Submitted To:

Shree M. & N. Virani Science College
Rajkot

2013

Prepared By:

Nitesh N Bagda
Aditya M katira
B.Sc.IT Sem-5/F-4
ID-BIT13F411
I would like to express my gratitude and appreciation to all those who gave me the possibility to complete this project. A special thanks to our final year project coordinator Dr. Prof. Pradip Vanparia and Prof. Haresh Khachariya whose help, stimulating suggestions and encouragement, helped me to coordinate my project and write this report.

I would also like to acknowledge with much appreciation the crucial role of the faculties of Computer Department, who gave me the permission to use all required lab and the necessary material to complete this project. I am also thankful to them for their extreme support and motivation.
I would like to dedicate this project to my Loving Parents and Teachers....!!!
INDEX

PROJECT PROFILE ...7

LIST OF FIGURES

FIGURE 1 LEVEL DATA FLOW DIAGRAM ..8
FIGURE 2: DATA FLOW DIAGRAM ..9
FIGURE 3. CONTEXT DIAGRAM ..10

LIST OF TABLES ...11

1. INTRODUCTION
 1.1. PROJECT SUMMARY ...12
 1.2. PURPOSE ..12
 1.3. SCOPE ..13
 1.4. TECHNOLOGICAL BACKGROUND ...14
 1.5. MODULE DESCRIPTION ...17

2. PROJECT MANAGEMENT
 2.1. ATTRIBUTES OF PROJECT MANAGEMENT ..18
 2.2. FEATURES OF PROJECT ...19
 2.3. PROCESS OF PROJECT MANAGEMENT ..20

3. SYSTEM REQUIREMENTS ..23

4. HARDWARE AND SOFTWARE CONFIGURATION ...24

5. SYSTEM ANALYSIS
 5.1. STUDY OF CURRENT SYSTEM ..25
 5.2. FEASIBILITY ...25
6. **RISK MANAGEMENT** ... 30
 6.1. **MANAGEMENT RISK** .. 31
 6.2. **TECHNICAL RISK** ... 31

7. **TESTING** .. 32

8. **SCREEN SHOTS** ... 34

9. **LIMITATIONS AND FUTURE ENHANCEMENTS** 41

10. **CONCLUSIONS** ... 43

11. **BIBLIOGRAPHY** ... 44
Project Profile

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Share’s Management System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>To store the records of the customers of a broking enterprise</td>
</tr>
<tr>
<td>Platform</td>
<td>Server side- windows xp, windows vista/7/8</td>
</tr>
<tr>
<td></td>
<td>Client side- windows xp, windows vista, Windows 7/8</td>
</tr>
<tr>
<td>Front End</td>
<td>Java</td>
</tr>
<tr>
<td>Back End</td>
<td>Oracle 9i</td>
</tr>
<tr>
<td>Technology</td>
<td>Netbeans</td>
</tr>
<tr>
<td></td>
<td>Netbeans is an editor for java programming</td>
</tr>
<tr>
<td>Period of project work</td>
<td>Start Date:- 05/07/2013</td>
</tr>
<tr>
<td>Developed By</td>
<td>Nitesh N. Bagda & Aditya M. Katira</td>
</tr>
<tr>
<td>Concerned Department</td>
<td>Department of Computer Science and Information Technology</td>
</tr>
<tr>
<td>Submitted to</td>
<td>Shree M. & N. Virani science College Rajkot</td>
</tr>
</tbody>
</table>
List of Figures

Level Data Flow Diagram (DFD)
Data Flow Diagram

- A level higher than level 1, showing the whole system as a single process with external entities around it.
Here it is shown with the help of diagram that the admin manipulates or add/del records and fetch the records from the database as well.

The admin is shown at the left side, the software at the center and database at right side. All the process are two way of the application.
List of Tables

Table sales_master

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>size</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_id</td>
<td>Varchar2</td>
<td>20</td>
<td>Primary key</td>
</tr>
<tr>
<td>datee</td>
<td>Date</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>c_name</td>
<td>Varchar2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>s_name</td>
<td>Varchar2</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>price</td>
<td>Numeric</td>
<td>(10,2)</td>
<td></td>
</tr>
<tr>
<td>quantity</td>
<td>Numeric</td>
<td>(10,2)</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>Numeric</td>
<td>(10,2)</td>
<td></td>
</tr>
</tbody>
</table>

Table customer_master

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>size</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_id</td>
<td>Varchar2</td>
<td>20</td>
<td>Primary key</td>
</tr>
<tr>
<td>c_name</td>
<td>Varchar2</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>c_address</td>
<td>Varchar2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>c_mobile</td>
<td>Varchar2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>c_phone</td>
<td>Numeric</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>c_email_id</td>
<td>Numeric</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Table userdata

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>size</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_id</td>
<td>Varchar2</td>
<td>30</td>
<td>Primary key</td>
</tr>
<tr>
<td>password</td>
<td>Varchar2</td>
<td>50</td>
<td>Not Null</td>
</tr>
</tbody>
</table>
Introduction

PROJECT SUMMARY

Share’s Management System is a java based application, which is used for maintaining and analyzing the stock of the shares of the customers. All the communications is done through database.

There are different modules for the project, which are as follows:-

- Shares Data
- Customers Data
- Profit & Loss calculator
- Additional Information

The main objective of the project is to store the record of the customers including their personal details, quantity of shares, banking transactions, etc.

This system gives complete detail about the customers, their transactions, profit & loss.

Purpose

This Application allows user to maintain client’s shares related data. It stores their purchasing and selling of shares that also shows profit and loss from particular transaction. It also shows real time company quotes, different menus & sections, store important customers related data, display it and allows modifying it and much more. Its feature include where it allow to make Purchase and Sales calculation and save it in proper format, show Net Profit and Loss from particular transaction and show Average value of share.
Scope of the Project

Here we specify the functions which are available in this software and also functions which are not available in this software.

In Scope

In this project, the process of record maintenance is done.

In this project the user stores the data of their customers, this is specially for the user belonging to any broking company (who deals with purchases and sales of shares). The user thus can fetch the data of the customers easily and whenever required.

This project has a wide scope as it is developed in java, which is portable. This runs on any machines.

Out of Scope

The version of back end is oracle. This project may not work on older version of oracle as it is developed in oracle 9i.
Technological Background

The Share’s Management System is implemented with the latest Java technology utilizing extended swing library which makes layout easy to use and eliminate much of the tedious code to generate swing form.

Java 2 Platform, Standard Edition

Java is a so-called Object Oriented Programming language which every thing in it can be a class of its own type. OOP allows programmers to define any complex variable types to fit any programming requirements. Therefore, Java Platform, Standard Edition provides a complete environment for developing and deploying application running on desktops and servers, and can be executed on any operating system which has a Java Virtual Machine implementation.

As part of the effort to enhance the development of Java UI, Sun Microsystems introduced the Java Foundation Classes. Swing is a powerful collection of UI components and an extension to the Lightweight UI framework that is included in JDK Version 1.1. Using Swing, programmers can create UI with pure Java code that contains a rich collection of UI elements.

MySQL and JDBC

Java programmers can write application in the Java programming language to access any database, using standard SQL statements, while still following Java language conventions. As part of the release of Java 2 in 1998, a second version of JDBC was issued as well. MySQL is preferred database system nowadays since it is free, platform and independent, open source and fast. A typical 3-tier application is shown in Fig.
The Automated Inventory Management System is a typical example of 3-tier application, which has a couple of advantages. It separates visual presentation from the business logic and the raw data. Therefore, it becomes possible to access the same data and the same business rules from multiple clients, such as a Java application.

System Architecture

The visual part is implemented using all kinds of Swing components, which does not make database calls. The main function of this tier is to display information to the users upon user’s request generated by user’s inputs such as firing button events. Meanwhile, this tier convert users’ request to in order to get information to be displayed. For example, inventory list will display when user clicks ‘display’ button if he or she wants to know current inventory list. Client tier also distinguish two kinds of users for AIM, regular and manager. The latter will have privileged rights such as to add inventory items, delete or edit order, etc.
Business Tier

The middle tier, business logic, is called by the client tier to make database queries. It provides core functionalities of the system as well as connectivity to the data tier, which simplify tasks that were done by client tier.

Data Tier

The database backend stores information which can be retrieved by using Java Database Connectivity. JDBC is used to manage the communication between the middle tier and the backend database by issuing complex database queries.
Module Description

As this project (Share’s Management System) contains two modules.

The structure of the system is described by the figure given below:

The client database basically helps the user to retrieve the data of his customers.

Share’s Management System has a very user friendly facility for both the modules.
Project Management

Definition

Project management is the discipline of planning, organizing, motivating, and controlling resources to achieve specific goals. A project is a temporary endeavor with a defined beginning and end (usually time-constrained, and often constrained by funding or deliverables), undertaken to meet unique goals and objectives, typically to bring about beneficial change or added value. The temporary nature of projects stands in contrast with business as usual (or operations), which are repetitive, permanent, or semi-permanent functional activities to produce products or services. In practice, the management of these two systems is often quite different, and as such requires the development of distinct technical skills and management strategies.

The primary challenge of project management is to achieve all of the project goals and objectives while honoring the preconceived constraints. The primary constraints are scope, time, quality and budget. The secondary and more ambitious challenge is to optimize the allocation of necessary inputs and integrate them to meet pre-defined objectives.

The Attributes of Successful Project Management

The effectiveness of project management is critical in assuring the success of any substantial undertaking. Areas of responsibility for the project manager include planning, control and implementation. A project should be initiated with a feasibility study, where a clear definition of the goals and ultimate benefits need to be established. Senior managers' support for projects is important so as to ensure authority and direction throughout the project's progress and, also to ensure that the goals of the organization are effectively achieved within this process. The particular form of support given can influence the degree of resistance the project encounters.

Knowledge, skills, goals and personalities are all factors that need to be considered within project management. The project manager and his/her team should collectively possess the necessary and requisite interpersonal and technical skills to facilitate control over the various activities within the project.

The stages of implementation must be articulated at the project planning phase. Disaggregating the stages at its early point assists in the successful development of the project by providing a number of milestones that need to be accomplished for completion. In addition to planning, the
control of the evolving project is also prerequisite to success. Control requires adequate monitoring and feedback mechanisms by which senior and project managers can compare progress against initial projections at each stage of the project. Monitoring and feedback also enables the project manager to anticipate problems (e.g.: the knock-on effects of late start or finish times) and therefore take pre-emptive corrective measures for the benefit of the project overall.

Features of projects to be developed

- Projects are often carried out by a team of people who have been assembled for that specific purpose. The activities of this team may be co-ordinated by a project manager.
- Project teams may consist of people from different backgrounds and different parts of the organisation. In some cases project teams may consist of people from different organisations.
- Project teams may be inter-disciplinary groups and are likely to lie outside the normal organisation hierarchies.
- The project team will be responsible for delivery of the project end product to some sponsor within or outside the organisation. The full benefit of any project will not become available until the project as been completed.

Constraints on the completion of projects

a) **Time**
 Our definition of a project stated that it was an activity which had a defined beginning and ending point. Most projects will be close-ended in terms of there being a requirement for completion by a certain point in time. This point may be the result of an external factor such as new legislation, or may be derived from organisational requirements. It may also be partly determined by other constraints. There is likely to be some relationship between the time taken for a project and its cost. A trade-off between the two constraining factors may then be necessary.

b) **Resource Availability**

 There is likely to be a budget for the project and this will clearly be a major constraint. Cost constraints may be set in a number of ways, for example as an overall cash limit or as a detailed budget broken down over a number of expenditure headings. Labour resources in particular may be a limiting factor on the completion of the project. In the short run it is likely that labour will be fixed in supply. Whilst the overall resource available may in theory
be sufficient to complete the project, there may be difficulties arising out of the way in which the project has been scheduled. That is, there may be a number of activities scheduled to take place at the same time and this may not be possible given the amount of resources available.

c) **Quality factors**

Whether the project delivers the goods to the right quality.

There are techniques which can be used to overcome the problems referred to above. These include:

- **Budgeting**, and the corresponding control of the project budget through budgetary control procedures.
- **Project planning** and control techniques such as Gantt charts and network analysis.

An important point to note at this stage is how the various constraints on project completion are likely to be interlinked with each other. For example, problems with time constraints or resource constraints may be overcome by spending more through working overtime, employing more people or purchasing better machines. Budget problems may have a knock-on effect on the achievement of deadlines.

It is important to remember that while project management techniques are important, they tend to understate the importance of the key resource: people. In a fact changing environment where tasks are often difficult, controversial with uncertain outcomes, "people management" skills are called for.

THE PROCESS OF PROJECT MANAGEMENT

Project Planning

A major decision at the outset of any project is to decide upon the organization and composition of the project team. In so doing, it is worth remembering that many members will have dual responsibilities of involvement in the project in addition to a commitment to other projects or management of a functional area on a day-to-day basis. It is at this stage that a project manager should be appointed and responsibilities made explicit for all members of the team.
The selection of the team will be dependent upon the skill requirements of the project, and upon the matching of those skills to those possessed by individual members of the team. There may be a conflict here with hierarchical status.

The project management team will, therefore, begin its task in advance of project proper so that a plan can be developed. An important first step is to set the objectives and then define the project, breaking it down into a set of activities and related costs. It is probably too early to determine exact resource implications at this stage, but expected requirements for people, supplies and equipment should at least be estimated during the planning stage.

Project Scheduling

This phase is primarily concerned with attaching a timescale and sequence to the activities to be conducted within the project. Materials and people needed at each stage of the project are determined and the time each is to take will be set.

A popular and easy to use technique for scheduling is the use of Gantt charts. Gantt charts reflect time estimates and can be easily understood. Horizontal bars are drawn against a time scale for each project activity, the length of which represent the time taken to complete. Letters or symbols can also be added to the left of each bar to show which other activities need to be completed before that one can begin.

Short overview of Project Management process

Traditional approaches to project management have emphasised the procedures involved. This reflects an idea of project management which has emphasised physical resources and the use of analytical techniques such as network analysis. Another approach which has been found to be effective is much more people and organisation oriented and can be broken down into a series of steps:
a) Clarifying the nature of the project
b) Defining goals and objectives
c) Feasibility studies
d) Detailed organisation of the project:
 • Project definition
 • Planning and scheduling
e) Project implementation and control
System Requirements

User characteristics

The user characteristics of the user show which kind of user are dealing with the system.

There is only one user who deals with their software and i.e. admin

Admin

Administrator takes the care of whole organization. The admin is the person who have the rights to decide whether to allow person to organize their event or not.

In this project the admin has to login first to access the software for further purpose. The user can access by entering correct username and password. Thus all the activities which are necessary for a proper functioning of the software are performed by this user called Admin.
Hardware and Software configuration

Software Requirements

Operating system: - Multi platform (windows 2000/xp/ windows vista/7/8)
Java: - Java Development Kit (JDK) version 7 or newer installed
Database software: - oracle 9i or newer version
Editor: - Netbeans IDE 7.3.1 or newer version

Hardware Requirements

800 MHz Intel Pentium III or equivalent processor
512 MB of RAM
40 GB HDD
Minimum 20 MB free disk space for database and installation
Display Adapter VGA (800* 600 resolution and 256 color mode)
System Analysis

Study of current system

In our project we have a user who maintains the record of each customer belonging to his enterprise.

Share’s management System is designed to help the user add record and maintain the existing one accordingly. This project has many different modules in it like customer_data, profit & loss calculator, login page, etc

Our project has the ability which is in hand of administrator to add more records according to the need of it. He can also delete or update existing record whenever required. The entire software is controlled by the admin user itself.

Problems and weakness of current system

Every project has some problem and weakness. The software developed by us also has some weakness as well.

Here the software cannot be accessed by any other user. Along with that the software has limited features; it has only basic facility as compared to that of giant software. The version error also proves to be a big problem. This project compulsory needs the only that particular version of the software in which it is developed.

FEASIBILITY

PROJECT FEASIBILITY STUDY GUIDELINE
This guideline is to be used in preparing a feasibility study for major and minor projects. This is different to the work carried out in the analysis Module because we are now concerned with the details of a particular project as opposed to the overall planning of a whole multi-year software programme.

The term “feasibility study” is used as a convenient description for the output for the work done, users of this toolkit should not apply preconceived notions of what a feasibility study consists of. Stated as simply as possible, the work done here must show that the project:

- is in accordance with predetermined needs;
- is the most suitable technical solution to the needs;
- can be implemented within any capacity constraints of the Institution which operates;
- has been subject to a due diligence that shows it is legally, physically and socially compliant;
- is fully costed over the whole life of the project;
- has taken due cognisance of the risks associated with its whole life cycle; and
- is affordable to the institution responsible for the project in the context of the available budget;

The feasibility study guideline set out below is for a comprehensive document that, in many instances simply uses information already collected and set out as part of the steps carried out by the Institution. That said it is necessary to create a study that creates a holistic justification for the project and serves as a living document against which project deliverables are measured during procurement and even after implementation of the project.

A feasibility study needs to be authentic and thorough. It is the basis for government making an important investment decision, not just a bureaucratic requirement. Regardless of the term and scale of a project, there is a great deal at stake when the procurement choice is made, and long-term implications.

- It provides information about costs (explicit and hidden), and gives an indication of whether costs can be met from within institutional budgets without disruptions to other activities.
- It allows for the identification, quantification, mitigation and allocation of risks.
- It prompts institutions to consider how the project will be structured.
- It identifies constraints, which may cause the project to be halted.
- It ensures that the project is developed around a proper business plan.

A feasibility study is an evolving, dynamic process. While it is used to justify what is developed and at what cost (the investment decision) it is also used throughout the procurement phase to check that the project is being developed in accordance with the original assumptions and, where change is necessary, it is also used to manage the change.
THE OPTIONS ANALYSIS

Step 1: List all the solution options the institution has considered
The list must cover the range of the most viable solution options for providing the specified outputs of the required service.

Step 2: Evaluate each solution option
The purpose of the evaluation is to:

- identify the advantages and disadvantages of each solution option
- examine the risks and benefits for, and potential impacts on, government of each option

Use the following template to set out each option

<table>
<thead>
<tr>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefly describe each solution option, including an outline of the alignment between each option and the institution’s strategic plan, the service it needs to deliver, and the output specifications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each option show the estimated initial capital expenditure, and the likely capital and operational costs over the full project cycle. (This preliminary analysis of financial impacts will provide a basis for the detailed work to come later in the feasibility study.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funding and affordability</th>
</tr>
</thead>
<tbody>
<tr>
<td>How is each option to be funded? Which options are affordable?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present a preliminary discussion about the risks to government in relation to each option.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEE and other socio-economic aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a preliminary view on the impact of each option on the BEE targets set out in the outputs specifications, and other socio-economic targets on which the institution may wish to deliver in the project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service delivery arrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss the service delivery arrangements for each option, and analyse the implications of each option for optimal interface between services. For example, if the institution is assessing its options for accommodation services, how would each solution option deal with the</td>
</tr>
</tbody>
</table>
integration of IT and communications services?

Transitional management issues
Discuss the issues that may arise in the transition from existing management arrangements in each solution option. For example, each solution option for staff accommodation will have implications for how a department’s security, IT, delivery and despatch systems are managed in the transition from the existing to the new.

Technical analysis
A comprehensive technical analysis must be presented for each solution option, including a supply chain/interface analysis. Include an assessment of the proposed technology and its appropriateness for each solution option.

Legislation and regulations
Does a particular option comply with the relevant legislation and regulations? Analyse firstly procurement legislation and regulations, and secondly sector-specific legislation and regulations, which may impact on the project, to establish a compliance list against which each option can be measured.

Human resources
- Establish the numbers and cost of existing institutional staff that will be affected in each solution option, do a skills and experience audit, and establish the key human resources issues for the project.
- Design and implement a suitable communication strategy for the institution to keep staff informed of the project investigations, as required by labour law.
- Assess the following for each option, if relevant:
 - organised labour agreements
 - the cost of transferring staff, if applicable
 - an actuarial study of accrued benefits that may be transferred
 - an initial view on the potential willingness of both staff and private parties to implement transfers.

Qualitative factors
There will be a number of qualitative benefits associated with a particular option, which may not be quantifiable and may not be considered as offsetting costs. It is important that these qualitative factors be identified early. For example: Cabinet has agreed that all departmental head offices must be located in the inner city. So although there might be a suitable building or site outside of the inner city, which may be cheaper or more appropriate for other reasons, Cabinet’s decision will affect the choice of solution option.
FINANCIAL ASSESSMENT

Construct the project cost model

The project cost model represents the full costs to the institution of delivering the required service according to the specified outputs via the preferred solution option using conventional public sector procurement.

The project cost model costing includes all capital and operating costs associated with the project and also includes a costing for all the risks associated with project. The public sector does not usually cost these risks, but it is necessary to get this understanding of the full costs to government of the proposed project.

Key characteristics of the project cost model
- Expressed as the net present value (NPV) of a projected cash flow based on an appropriate discount rate for the public sector
- Based on the costs for the most recent, similar, other project, or a best estimate
- Costs expressed as nominal costs
- Depreciation not included, as it is a cash-flow model.

REVISITING THE FEASIBILITY STUDY

The feasibility study must become the reference point for the Institution during procurement. When any assumptions change the feasibility study must be changed to see what impact the change will have PRIOR TO IMPLEMENTING THE CHANGE
Risk Management

The identification, analysis, assessment, control, and avoidance, minimization, or elimination of unacceptable risks. An organization may use risk assumption, risk avoidance, risk retention, risk transfer, or any other strategy (or combination of strategies) in proper management of future events.

Risk management is a logical process or approach that seeks to eliminate or at least minimize the level of risk associated with a business operation. Essentially, the process identifies any type of situation that could result in damage to any resource within the possession of the company, including personnel, then take steps to correct factors that are highly likely to result in that damage.

At the core of effective risk management strategies is the desire to find ways to manage the degree of uncertainty that exists within any business enterprise. The first step in the process has to do with evaluating the utilization of resources as they current stand. This step involves understanding the logical flow of the production process and how it relates to the successful manufacturing of goods and services for sale to consumers. Once there is a solid grasp of how the organization functions, it is then possible to move on to refining that process with an eye toward managing that uncertainty factor.

Once the business model is understood, it is possible to identify specific risks that are present throughout the production process, including the delivery of goods and services to buyers. As those risks are identified, they are analyzed for ways to alter the process so that the end result is still achieved, but the degree of risk is minimized or removed altogether. Risk management may be an extremely complicated process or require nothing more than making a few minor adjustments.

Risk management not only seeks to minimize the potential for injury to employees, but also reduce the opportunity for money and other forms of finance to be abused or utilized ineffectively. By making sure that all resources are utilized in a manner that is safe, logical, and efficient, the profit margin for the company will increase and everyone associated with the company is motivated to continue production.

Risk management may demand revamping policies and procedures in order to rid the company environment of potential risk situations. Risk management normally requires the support of owners and the management team in order to refine the overall operation and achieve the lowest degree of risk possible.
There may be two types of risks:

Management Risk

Management risk is concerned with the risk developed by management or managerial problems. Management risk is associated with the possible failure of management or its activities. To overcome management risk the development team must first analyze the probable risk likely to be occurred during development process and also try to find out it’s solution so that proper solution can be implemented and the process of project development moves on.

The project of Share’s Management System also had many management risk while development such as decision making, confusion in sharing different modules for development and designing, implementation at proper time, etc.

Technical Risk

The probability of loss incurred through the execution of a technical process in which the outcome is uncertain. Untested engineering, technological or manufacturing procedures entail some level technical risk that can result in the loss of time, resources, and possibly harm to individuals and facilities. Technical risk is measured as an expected value derived from prior experience that led to undesirable results.

The project of Share’s Management System also had many technical risks while development such as improper working of computer system, version error while running software into another system, etc. After the project is completed it may also have certain technical risk such as any other person using the software, modifying or deleting important files, etc. this may result in improper working of the software.
Testing

Introduction

This Testing Guide provides a plan for how one would test that their implementation is compliant with the Direct Project Specification. This Testing Plan consists of validating that your implementation can interoperate with at least three other implementations of various Deployment Models. The goal is to prove heuristically compliance with the Direct Project Specification.

Testing Overview

The system being tested is referred to as the "System Under Test" (SUT). It is expected that this is a complete system capable of Sending and Receiving using the Direct Project Specification. We use 'system' as the deployment models show any Sending side or any Receiving side is often made up of multiple distinct components. It is the whole set of components working together from end-user experience to the point at which the Direct Project Specifications that is collectively referred to as the System Under Test (SUT).

This Test Guide instructs the tester to test the SUT against at least three other implementations of a different type. These other implementations will be referred to as the "Other Test System" (OTS). By testing against three other systems we get a good heuristic to show that the Direct Project Specification was implemented correctly.

Test Plan

Pre-Conditions: Prior to testing the following must be available.

- Endpoint Addresses must be known and recorded
- Endpoint Digital Certificates must be issued
- Endpoint Digital Certificates must be published in a way that the SUT can discover (sometimes this is manual, LDAP, e-mail, or DNS)
- SUT must have basic network connectivity to the OTS (this can be over the internet, or in a lab)

The project of Share’s Management system was also tested at regular intervals, after the whole completion of the project and whenever required. Ours is a small project so it was not tested in a professional way but tested according to the concepts of testing for small projects in software engineering
✓ It was verified and tested after completion of each process
✓ It was also tested to check if there are any types of errors or not
✓ Also tested with validations
✓ At the end to check whether it had met all the requirements
✓ Tested on different several systems
Screen Shots

Login Page

The software can be accessed by entering correct username and password into the login box.
After the user login successfully. The homepage is displayed as shown in the above figure
Add New Record

The new record of the customer can be added in this page.
Customer Master

The records of all the customers are displayed in this page.
Sales_Master

The total record of sales of shares by each customer is displayed in this page.
Sales

The sales record of shares of each customer is done using sales page. The record can be further updated and saved.
This is a calculator to calculate profit and loss. By entering the share amount and quantity, the result is displayed automatically.
Limitations and Future Enhancements

Limitations

Limitations are something that limits a quality or achievement.

In every project there are certain limitations.

Our project also has limitations such as:-

- Not supported with database older version
- Doesn’t allow guest access
- Features are limited
- Multiple users cannot access the software
- Suitable for a small Enterprise

Future Enhancements

There is a lot of scope in this project for future enhancement

First

The different modules such as direct connection with the stock exchange terminal and online sales and purchase of shares can be done.

Second

There may be direct banking, cash transfer options available

Third

Multiple users can access it

Fourth

The existing database can be changed to other database such as Microsoft Access which proves to be runnable on every machine.

Fifth

The option of online feedback by the different users can also be included so that the project becomes more convenient.
Sixth

This project can be modified with more GUI features so that it becomes more user friendly.

Seventh

Customer’s login service can also be added in the future for more conveniences of the customers

Eighth

E-conference and Live chat option can be added into the software. This helps owner and it’s enterprise to deals with different company for better prospects.

Ninth

Direct SMS (Short Message Service) to customers regarding their stock and transactions can be send.

Tenth

Last but not the least. An option for MCX trading also proves to be a good enough for the betterment of the software.
Conclusion

In today’s fast paced information driven world there is need for instant availability of Share’s Management System type of software’s. In this project there are different categories in the menu which is a very simple and easy option for the user to have a look at their client’s data.

In this project the user gets satisfactory result by accessing various modules of his clients. Thus this project proves to be very informative and user friendly.

This project aims in fulfilling the user’s requirements which is to store the customer’s data and provides a good knowledge platform.
BIBLIOGRAPHY

Reference web-sites

www.wikipedia.com
www.java.net
www.robustcoding.com
www.krazytech.com

Reference Books

Effective Java Programming Language Guide
 By- Joshua Bloch

Head First Start
 By- Kathy Sierra

Programming with Java 3e A Primer
 By- E Balaguruswamy

Learning Java
 By- Patrick Niemeyer

Software Engineering
 By- Roger S. Pressman