

E-CORDIAL LABELING IN THE CONTEXT OF SWITCHING OF A VERTEX

S. K. Vyaidya¹ and N. B. Vyas²

¹Department of Mathematics, Saurashtra University, Rajkot-360005 (Gujarat) – India. ²Department of Mathematic, Atmiya Institute of Technology & Science, Rajkot – 360005 (Gujarat) – India. *Corresponding author: Email: samirkvaidya@yahoo.co.in, Tel: +91-9825292539

[Received-07/07/2012, Accepted-03/09/2012]

ABSTRACT:

Let G=(V(G),E(G)) be a graph and $f: E(G) \to \{0,1\}$ be a binary edge labeling. Define $f^*: V(G) \to \{0,1\}$ by $f^*(v) = \sum_{uv \in E(G)} f(uv)(mod 2)$. The function f is called E-cordial labeling of G if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. In the present work we discuss E-cordial labeling in the context of switching of a vertex in cycle, wheel, helm and closed helm.

Keywords: E-cordial labeling , Cycle, Wheel, Vertex switching

[I] INTRODUCTION

We begin with finite, connected and undirected graph G = (V(G), E(G)) without loops and multiple edges. For standard terminology and notations we follow Harary[4]. For extensive survey of graph labeling as well as bibliographic references we refer Gallian[2].

1.1. Definition If the vertices of the graph are assigned values subject to certain

condition(s) then it is known as *graph labeling*.

Most of the graph labeling techniques trace their origin to graceful labeling introduced independently by Rosa[7] and Golomb[3] which is defined as follows.

1.2. Definition

A function $f:V(G) \rightarrow \{0,1,\ldots,|E(G)|\}$ is called *graceful labeling* of graph G if f is injective and the induced function $f^*:E(G) \rightarrow \{1,2,\ldots,|E(G)|\}$ defined by $f^*(e = uv) = |f(u) - f(v)|$ is bijective. A graph which admits graceful labeling is called a *graceful graph*.

The famous Ringel-Kotzig conjecture [6] and illustrious work on it brought a tide of labeling problems with graceful theme.

1.3. Definition

A graph *G* is said to be *edge-graceful* if there exists a bijection $f: E(G) \rightarrow \{1, 2, ..., | E(G) |\}$ such that the induced function $f^*: V(G) \rightarrow \{0, 1, 2, ..., | V(G) | -1\}$ defined by $f^*(x) = \sum (f(xy))(mod | V(G) |)$, taken over all edges *xy* is a bijective.

The notion of edge gracefulness was introduced by Lo[5].

1.4. Definition

A mapping $f: V(G) \rightarrow \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of vertex v of G under f.

1.5. Notation

For an edge e=uv, the induced edge labeling $f^*: E(G) \rightarrow \{0,1\}$ is given by $f^*(e=uv) = |f(u) - f(v)|$ then $v_f(i) =$ the number of vertices of *G* having label *i* under *f* and let $e_f(i) =$ the number of edges of *G* having label *i* under f^* for i=0,1.

1.6. Definition

A binary vertex labeling of graph *G* is called a *cordial labeling* if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph *G* is called *cordial* if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit[1]. He also investigated several results on this newly defined concept.

1.7. Definition

Let G be a graph with vertex set V(G) and edge set E(G) and let $f: E(G) \rightarrow \{0,1\}$. Define f^* on V(G) by $f^*(v) = \sum \{f(uv)^*uv \in E(G)\} (mod 2)$. The function f is called an *E-cordial labeling* of G if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph is called *Ecordial* if it admits *E-cordial labeling*.

In 1997 Yilmaz and Cahit[12] have introduced E-cordial labeling as a weaker version of edge-graceful labeling having the blend of cordial labeling. They proved that the trees with *n* vertices, K_n , C_n are E-cordial if and only if $n \neq 2 \pmod{4}$ while $K_{m,n}$ admits E-cordial labeling if and only if $m+n \neq 2 \pmod{4}$.

Vaidya and Lekha[8] have proved that the graphs obtained by duplication of an arbitrary vertex as well as an arbitrary edge in cycle C_n admit E-cordial labeling. In addition to this they also derived that the joint sum of two copies of cycle C_n , the split graph of even cycle C_n and the shadow graph of path P_n for even n are E-cordial graphs. The same authors in [9] proved that the middle graph, total graph and split graph of P_n and the composition of P_n with P_2 admit E-cordial labeling.

Vaidya and Vyas[10] proved that the mirror graphs of even cycle C_n , even path P_n and hypercube Q_k are E-cordial graphs. The same authors in [11] proved that $K_n \times P_2$ and $P_n \times P_2$ are E-cordial graphs for even nwhile $W_n \times P_2$ and $K_{1,n} \times P_2$ are E-cordial graphs for odd n.

1.8. Definition

A vertex switching G_v of a graph G is the graph obtained by taking a vertex v of G,

removing all the edges incident to v and adding edges joining v to every other vertex which are not adjacent to v in G.

1.9. Definition

The wheel graph W_n is defined to be the join K_1+C_n . The vertex corresponding to K_1 is known as *apex vertex* and vertices corresponding to cycle are known as *rim vertices* while the edges corresponding to cycle are known as *rim edges*. We continue to recognize apex of wheel as the apex of respective graphs obtained from wheel.

1.10. Definition

The *helm* H_n is the graph obtained from a wheel W_n by attaching a pendant edge to each rim vertex.

1.11. Definition

The *closed helm* CH_n is the graph obtained from a helm H_n by joining each pendant vertex to form a cycle.

We continue to recognize terminology used in Definition 1.9 for Definitions 1.10 and 1.11 also.

In the following section we will investigate some new results on E-cordial labeling of graphs.

[II] MAIN RESULTS

2.1. Theorem

The graph obtained by switching of an arbitrary vertex in cycle C_n admits E-cordial labeling except for $n \equiv 2 \pmod{4}$.

Proof: Let $v_1, v_2, ..., v_n$ be the successive vertices of C_n and G_v denotes graph obtained by switching of vertex v of G. Without loss of generality let the switched vertex be v_1 and we initiate the labeling from v_1 . To define $f: E(G_{v_1}) \rightarrow \{0,1\}$ we consider following cases.

Case 1: When *n* is odd For $3 \le i \le n-1$: $f(v_1v_i) = \begin{cases} 1, & i \equiv 1 \pmod{2} \\ 0, & otherwise; \end{cases}$ Subcase 1: $n \equiv 3 \pmod{4}$ For $2 \le i \le n-1$: $f(v_i v_{i+1}) = \begin{cases} 1, & i \equiv 0 \pmod{2} \\ 0, & otherwise; \end{cases}$ <u>Subcase 2:</u> $n \equiv 1 \pmod{4}$ For $2 \le i \le n-1$: $f(v_i v_{i+1}) = \begin{cases} 0, & i \equiv 0 \pmod{2} \\ 1, & otherwise; \end{cases}$ Case 2: When *n* is even Subcase 1: $n \equiv 0 \pmod{4}$ $f(v_2v_3) = 1;$ For $3 \le i \le n-1$: $f(v_1v_i) = \begin{cases} 0, & i \equiv 1 \pmod{2} \\ 1, & otherwise; \end{cases}$ $f(v_i v_{i+1}) = \begin{cases} 1, & i \equiv 1 \pmod{2} \\ 0, & otherwise; \end{cases}$ Subcase 2: $n \equiv 2 \pmod{4}$

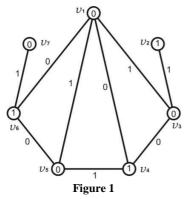
A graph with *n* vertices is not E-cordial when $n \equiv 2 \pmod{4}$ as observed by Yilmaz and Cahit [12].

In view of the labeling pattern defined above f satisfies the condition $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ as shown in *Table 1*.

Hence G_{ν_1} admits E-cordial labeling.

2.2. Illustration

Consider the graph obtained by switching of a vertex v_1 in cycle C_7 . The E-cordial labeling is as shown in *Figure 1*.



2.3. Theorem

The graph obtained by switching of a rim vertex in wheel W_n admits E-cordial labeling except for $n \equiv 1 \pmod{4}$.

Proof: Let *v* as the apex vertex and $v_1, v_2, ..., v_n$ be the rim vertices of wheel W_n . Let G_{v_1} denotes graph obtained by switching of a rim vertex v_1 of $G=W_n$. We define $f: E(G_{v_1}) \rightarrow \{0,1\}$ as follows.

For
$$2 \le i \le n$$
:

$$f(vv_i) = \begin{cases} 1, & i \equiv 0 \pmod{2} \\ 0, & otherwise. \end{cases}$$
For $2 \le i \le n$:

$$f(vv_i) = \begin{cases} 1, & i \equiv 0 \pmod{2} \\ 0, & otherwise. \end{cases}$$
For $2 \le i \le n-1$:

$$f(v_iv_{i+1}) = \begin{cases} 1, & i \equiv 0 \pmod{2} \\ 0, & otherwise. \end{cases}$$
For $3 \le i \le n-1$:

$$f(v_iv_i) = \begin{cases} 0, & 3, i, \frac{n}{2} + 1 \\ 1, & otherwise. \end{cases}$$
For $3 \le i \le n-1$:

$$f(v_iv_i) = \begin{cases} 0, & 3, i, \frac{n}{2} + 1 \\ 1, & otherwise. \end{cases}$$
Case 2: When *n* is odd
Subcase 1: $n \equiv 3 \pmod{4}$
For $2 \le i \le n$:

$$f(vv_i) = 1;$$
For $2 \le i \le n-1$:

$$f(v_i v_{i+1}) = 0;$$

For $3 \le i \le n-1$:
$$f(v_1 v_i) = \begin{cases} 0, & 3, i, \frac{n+1}{2} \\ 1, & otherwise. \end{cases}$$

<u>Subcase 2:</u> $n \equiv 1 \pmod{4}$

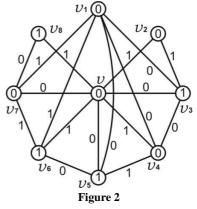
In this case $|V(W_n)| = n + 1 \equiv 2 \pmod{4}$ equivalently $n \equiv 1 \pmod{4}$. This graph is not E-cordial because the graph *G* with number of vertices congruent to $2 \pmod{4}$ does not admits E-cordial labeling as observed by Yilmaz and Cahit [12].

In view of the labeling pattern defined above f satisfies the condition $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ as shown in *Table 2*.

Hence G_{ν_1} admits E-cordial labeling.

2.4. Illustration

Consider the graph obtained by switching of a rim vertex in wheel W_8 . The E-cordial labeling is as shown in *Figure 2*.



2.5. Theorem

The graph obtained by switching of an apex vertex in helm H_n admits *E*-cordial labeling. Proof: Let H_n be a helm with *v* as the apex vertex, $v_1, v_2, ..., v_n$ be the vertices of cycle and $u_1, u_2, ..., u_n$ be the pendant vertices. Let G_v denotes graph obtained by switching of an apex vertex *v* of $G=H_n$. We define $f: E(G_v) \rightarrow \{0,1\}$ as follows.

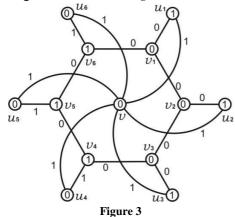
For
$$1 \le i \le n$$
:
 $f(vu_i) = 1;$
 $f(v_i v_{i+1}) = 0; \quad (v_{n+1} = v_1)$
 $f(v_i u_i) = \begin{cases} 0, & 1, & i, \\ 1, & otherwise. \end{cases}$

In view of the labeling pattern defined above *f* satisfies the condition $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ as shown in *Table 3*.

Hence G_{v} admits E-cordial labeling.

2.6. Illustration

Consider the graph obtained by switching of an apex vertex in Helm H_6 . The E-cordial labeling is as shown in *Figure 3*.



2.7. Theorem

The graph obtained by switching of an apex vertex in closed helm CH_n admits E-cordial labeling.

Proof: Let *v* as the apex vertex, $v_1, v_2, ..., v_n$ be the vertices of inner cycle and u_1 , $u_2, ..., u_n$ be the vertices of outer cycle CH_n . Let G_v denotes graph obtained by switching of an apex vertex v of $G=CH_n$. We define $f: E(G_v) \rightarrow \{0,1\}$ as follows.

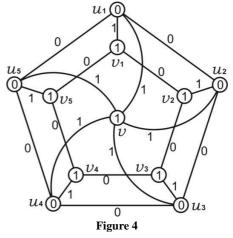
For
$$1 \le i \le n$$
:
 $f(vu_i) = 1;$
 $f(v_iv_{i+1}) = 0;$ $(v_{n+1} = v_1)$
 $f(u_iu_{i+1}) = 0;$ $(u_{n+1} = u_1)$
 $f(v_iu_i) = 1.$

In view of the labeling pattern defined above f satisfies the condition $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ as shown in *Table 4*.

Hence G_v admits E-cordial labeling.

2.8. Illustration

Consider the graph obtained by switching of an apex vertex in closed helm CH_5 . The Ecordial labeling is as shown in *Figure 4*.



[III] CONCLUDING REMARKS

Here we investigate E-cordial labeling in the context of switching of a vertex of some graphs. To investigate similar results for other graph families and in the context of different graph labeling problems is an open area of research.

E-CORDIAL LABELING IN THE	CONTEXT OF SWITCHING OF A VERTEX
---------------------------	----------------------------------

	vertex condition	edge condition
$n \equiv 0 \pmod{4}$	$\upsilon_f(0) = \upsilon_f(1) = \frac{n}{2}$	$e_f(0) + 1 = e_f(1) = \left\lceil \frac{2n-5}{2} \right\rceil$
$n \equiv 1 \pmod{4}$	$v_f(0) = v_f(1) + 1 = \left\lceil \frac{n}{2} \right\rceil$	$e_f(0) = e_f(1) + 1 = \left\lceil \frac{2n-5}{2} \right\rceil$
$n \equiv 3 \pmod{4}$	$v_f(0)+1 = v_f(1)+1 = \left\lceil \frac{n}{2} \right\rceil$	$e_f(0) + 1 = e_f(1) = \left\lceil \frac{2n-5}{2} \right\rceil$

Table 1: vertex and edge conditions corresponding to Theorem 2.1

	vertex condition	edge condition
$n \equiv 0 \pmod{4}$	$v_f(0) - 1 = v_f(1) = \frac{n}{2}$	$e_f(0) = e_f(1) = \frac{3(n-2)}{2}$
$n \equiv 2 \pmod{4}$	$\upsilon_f(0) = \upsilon_f(1) - 1 = \frac{n}{2}$	$e_f(0) = e_f(1) = \frac{3(n-2)}{2}$
$n \equiv 3 \pmod{4}$	$v_f(0) = v_f(1) = \frac{n+1}{2}$	$e_f(0) + 1 = e_f(1) = \frac{3(n-2)+1}{2}$

Table 2: vertex and edge conditions corresponding to Theorem 2.3

	vertex condition	edge condition
$n \equiv 0 (mod 2)$	$v_{f}(0)-1 = v_{f}(1) = n$	$e_{f}(0) = e_{f}(1) = n + \frac{n}{2}$
$n \equiv 1(mod 2)$	$v_f(0) = v_f(1) - 1 = n$	$e_{f}(0) = e_{f}(1) + 1 = n + \left\lceil \frac{n}{2} \right\rceil$

Table 3: vertex and edge conditions corresponding to Theorem 2.5

	vertex condition	edge condition
$n \equiv 0 \pmod{2}$	$v_f(0)-1 = v_f(1) = n$	$e_f(0) = e_f(1) = 2n$
$n \equiv 1 \pmod{2}$	$v_f(0) = v_f(1) - 1 = n$	$e_f(0) = e_f(1) = 2n$

Table 4: vertex and edge conditions corresponding to Theorem 2.7

REFERENCES

- Cahit I., [1987] Cordial Graphs: A weaker version of graceful and harmonious Graphs, *Ars Combinatoria* 23: 201-207.
- [2] Gallian J. A., [2011] A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, 18 (#DS6). Available: http://www1.combinatorics.org/Surveys/ds6.pdf
- [3] Golomb S. W., [1972] How to number a graph, in Graph theory and Computing, R. C. Read, ed., *Academic Press, New York*, 23-37.
- [4] Harary F., [1969] Graph Theory, Addison Wesley, Reading, Massachusetts.

- [5] Lo S., [1985] On edge graceful labelings of graphs, *Congr. Numer.* 50: 231-241.
- [6] Ringel G., [1964] Problem 25, Theory of Graphs and its Applications, *Proc. Symposium Smolenice*, 1963, Prague, 162.
- [7] Rosa A., [1967] On certain valuations of the vertices of a graph, *Theory of graphs* (*Internat. Symposium, Rome, July 1966),* Gordon and Breach, N. Y. and Dunod Paris, 349-355.
- [8] Vaidya S. K. and Lekha Bijukumar, [2011] Some New Families of E-cordial Graphs,

Journal of Mathematics Research, 3: 105-111. doi:10.5539/jmr.v3n4p105

- [9] Vaidya S. K. and Lekha Bijukumar, [2011] Some New Results on E-cordial Labeling, Int. Journal of Information Science and Computer Mathematics 3: 21-29. Available: http://www.pphmj.com/abstract/6004.htm
- [10] Vaidya S. K. and Vyas N. B., [2011] E-cordial Labeling of Some Mirror graphs, *Int. Journal of Contemporary Advanced Mathematics* 2: 22-27. Available:

http://www.cscjournals.org/csc/manuscript/Journ als/IJCM/volume2/Issue1/IJCM-19.pdf

- [11] Vaidya S. K. and Vyas N. B., [2011] E-cordial Labeling for Cartesian Product of Some Graphs, *Studies in Mathematical Sciences* 3: 11-15. doi:10.3968/j.sms.1923845220110302.175
- [12] Yilmaz R. and Cahit I., [1997] E-cordial graphs, Ars Combin. 46: 251-266.