

PERFORMANCE ANALYSIS OF COOPERATIVE SPECTRUM SENSING OVER TWDP FADING IN CRN WITH HARD DATA FUSION

A Thesis Submitted to the Atmiya University, For the Degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING & TECHNOLOGY

by

DOBARIA ANKIT DEVJIBHAI

Enrolment No. 190156002

Under the Guidance of

DR. VISHAL S. VORA

Department of Electronics and Communication Engineering

ATMIYA UNIVERSITY, YogidhamGurukul, Kalawad Road, Rajkot–360005, Gujarat (India)

May, 2023

Declaration by Research Scholar Originality of Research Work

I declare that thesis entitled "*Performance analysis of Cooperative Spectrum Sensing over TWDP fading in CRN with Hard Data Fusion*" is my own work conducted under the supervision of **Dr. Vishal S. Vora** at Department of **Electronics and Communication Engineering**, Faculty of **Engineering and Technology**, Atmiya University, Rajkot, Gujarat, India and approved by the Director of Research.

I further declare that to the best of my knowledge the thesis does not contain any part of any work which has been submitted for award of any degree either in this University or any other University without proper citation.

Date: 27-05-2023 Place: Rujkれ

Signature of Candidate Dobaria Ankit Devjibhai

Certificate of Supervisor

This is to certify that work entitled "*Performance analysis of Cooperative Spectrum Sensing over TWDP fading in CRN with Hard Data Fusion*" is a piece of research work done by **Dobaria Ankit Devjibhai** under my supervision for the degree of Doctor of Philosophy in Department of **Electronics and Communication Engineering**, Faculty of **Engineering and Technology**, Atmiya University, Rajkot, Gujarat, India

To the best of my knowledge and belief the research work and thesis

- I. Embodies the work of candidate himself / herself,
- II. Has duly been completed,
- III. Fulfils the requirement of ordinance related to Ph.D. degree of the University &
- IV. is up to the standard both in respect of content and language for being referred to the examiner.

Date: 27 - 05 - 2023Place: Raikot

To Zen Signature of the Research Supervisor : Name of Research Supervisor : Dr. Vishal S. Vora

Page | II

Thesis Approval Form

The Viva-Voce of the Ph.D. thesis entitled "*Performance analysis of Cooperative Spectrum Sensing over TWDP fading in CRN with Hard Data Fusion*" submitted by **Dobariya Ankit Devjibhai (Enrolment No. 190156002)** was conducted on **20/05/2023 (Saturday)** at Atmiya University, Rajkot, Gujarat

Based on the Performance of the Candidate, We, the panel of examiners, recommend that (Please tick any of the following)

He / She be awarded Ph.D. Degree

2. He / She be awarded Ph.D. Degree with minor modification

Please Suggest Modification

3. The following modifications are to be incorporated in the thesis within one month and viva-voce be re-conducted by the same panel of examiners

Please Suggest Modification

4. He / She should not be awarded Ph.D. Degree

Please mention Reason for Rejection

Date: 20/05/2023

Place: Rajkot

Signature	Dr. V.S. VORA	Adhids	DR D.G. ICemden
	Research Supervisor	University Nominee	External Examiner

Declaration by Research Scholar Submission of Thesis

I declare that the submitted thesis entitled "Performance analysis of Cooperative Spectrum Sensing over TWDP fading in CRN with Hard Data Fusion" incorporates

- 1. All the suggestions / directions / modifications / additions / deletions received from the supervisor and the external examiners through their thesis evaluation reports.
- All the suggestions / directions / modifications / additions / deletions received from the panel of examiners during the public viva-voce (Open Defence) conducted on 20/05 / 2023

Date: 27-05-2023 Place: Rujhot

Signature of the Research Scholar [Dobaria Ankit Devjibhai]

Title	List of Contents	Pg.No.
	Declaration by Research Scholar - Originality of Research Work	Ι
	Certificate of Supervisor	II
	Thesis Approval Form	III
	Declaration by Research Scholar – Submission of Thesis	IV
	Acknowledgement	V
	Contents	VII
	List of Figures	Х
	List of Tables	XII
	List of Acronyms	XIII
	List of Symbol	XV
	Abstract	XVI
Chapter : 1	Introduction	1
	1.1 History of Communication Networks	1
	1.2 Motivation	2
	1.3 Contribution	3
	1.4 Thesis Organization	5
Chapter : 2	Cognitive Radio Networks	7
	2.1 Introduction	7
	2.2 Approaches for Secondary spectrum access	9
	2.3 Fundamental Terminologies Linked to Cognitive Radio	10
	2.4 Cyclic approach for Cognitive Radio	11
	2.4.1 Spectrum Sensing	12
	2.4.2 Spectrum Decision Making	12
	2.4.3 Spectrum Sharing	12
	2.4.4 Spectrum Mobility	13
	2.5 Basic Proposition about Spectrum Sensing	13
	2.6 Causes and consequences of Cognitive Radio	14

Contents

Chapter: 3	Spectrum Sensing Method and Fading Environment	15
	3.1 Introduction	15
	3.2 Analytical Model of Spectrum Sensing	15
	3.3 Spectrum Sensing benchmarks for Performance	17
	3.4 Spectrum Sensing Methods	18
	3.4.1 Energy Detection	19
	3.4.2 Matched Filter Detection	22
	3.4.3 Cyclo-stationary characteristics based detection	24
	3.4.4 Interference based Sensing	26
	3.5 Channels for wireless sensor networks	28
	3.5.1 The Effect of Radio Transmissions on Spectrum Sensing	30
	3.6 Detection of Spectrum sensing over Fading Environment	31
	3.6.1 AWGN Channel	31
	3.6.2 Rayleigh Channel	32
	3.6.3 Rician Channel	34
	3.6.4 Wei-bull Channel	34
	3.6.5 Two-wave with Diffuse-Power Channel	35
	3.7 Co-operative Spectrum Sensing	37
	3.7.1 Co-operative Spectrum Sensing Model	40
	3.7.2 Classifications of CSS Model	41
	3.7.3 Data Combining techniques in CSS	44
	3.7.4 Hard Decision Strategy	44
	3.7.5 Soft Decision Strategy	46
	3.8 Overview of Literature Survey	48
Chapter : 4	Proposed Approach	55
	4.1 Overview	55
	4.2 Proposed cluster based DCSS Model	55
	4.3 Clustering algorithm	57
	4.4 Flow Chart for showing sequences of clustering algorithm	59
	4.5 Flow Chart for cluster based DCSS model	61
	4.6 Two-Stage Hard fusion decision Scheme	62

	4.6.1 AND_AND Decision Strategy	63
	4.6.2 AND_OR Decision Strategy	64
	4.6.3 OR_AND Decision Strategy	65
	4.6.4 OR_OR Decision Strategy	66
Chapter : 5	Performance Evaluation	67
	5.1 Overview	67
	5.2 Simulation Scenario – Creation of Nodes	68
	5.3 Simulation Results and Discussion	69
	5.4 Comparative Performance Analysis	74
Chapter : 6	Conclusion and Future Scope	81
	6.1 Conclusion	81
	6.2 Future Scope	82
	Bibliography	83
Appendix A	Plagiarism Report	
Appendix B	Publication	95

List of Figures

Figure No.	Name of the Figure	Pg. No.
Figure 2.1	Utilization of Frequency Spectrum band	7
Figure 2.2	Concept of Spectrum Hole	8
Figure 2.3(a)	Underlay Approach	9
Figure 2.3(b)	Overlay Approach	9
Figure 2.4	Fundamental Terminologies Linked to Cognitive Radio	10
Figure 2.5	Cyclic approach for Cognitive Radio	11
Figure 2.6	Basic Proposition about Spectrum Sensing	13
Figure 3.1	Hypotheses testing and possibilities of detection for existence of PU	16
Figure 3.2	Classifications of Spectrum Sensing Methods	19
Figure 3.3	Time-domain block schematic of the Analog-Energy Detector	20
Figure 3.4	Time-domain block schematic of the Digital-Energy Detector	21
Figure 3.5	Diagrammatic Representation of the Energy Detection Process	21
Figure 3.6	Block Diagram: Method of Detection Using a Matched Filter	24
Figure 3.7	Diagrammatic Representation of the MF Detection Process	24
Figure 3.8	Block diagram of Cyclo-stationary feature based detector	26
Figure 3.9	Model for Interference-Temperature Control	27
Figure 3.10	Comparative analysis of the reliability and complexities of several SS approaches	28
Figure 3.11	Classifications of wireless communication fading channel	29
Figure 3.12	Classifications of small-scale-fading	29
Figure 3.13	Common scenarios for wireless signal transmission	30
Figure 3.14	Effect of multi-path fading and shadowing effect in CSS	37
Figure 3.15	Fundamental working procedure of CSS	39
Figure 3.16	Co-operative spectrum sensing model	40
Figure 3.17	Centralized Co-operative spectrum sensing scenario	42
Figure 3.18	De-centralized Co-operative spectrum sensing scenario	43
Figure 3.19	Data decision combining process in CSS	44
Figure 3.20	Soft data combining process in CSS	46
Figure 4.1(a)	Proposed Cluster based D_CSS 3D-Model	56
Figure 4.1(b)	Proposed Cluster based D_CSS 2D-Model	57

Figure 4.2	Formation of cluster using K means algorithm	58
Figure 4.3	Flow chart for showing sequences of clustering algorithm	60
Figure 4.4	Flow chart of Cluster based D_CSS approach	61
Figure 4.5	Illustration of AND_AND Decision Strategy	63
Figure 4.6	Illustration of AND_OR Decision Strategy	64
Figure 4.7	Illustration of OR_AND Decision Strategy	65
Figure 4.8	Illustration of OR_OR Decision Strategy	66
Figure 5.1	Creation of users and formulation of cluster	68
Figure 5.2	SNR versus P_{md} over TWDP fading channel (L=25)	69
Figure 5.3	SNR versus P_{md} over TWDP fading channel (L=50)	70
Figure 5.4	SNR versus P_{md} over TWDP fading channel (L=75)	70
Figure 5.5	SNR versus P_{md} over TWDP fading channel (L=100)	71
Figure 5.6	SNR versus P_{md} over TWDP fading channel (L=200)	71
Figure 5.7	ROC of P_{fa} versus P_d over TWDP fading channel (L=100)	72
Figure 5.8	ROC of <i>SNR</i> versus P_d over TWDP fading channel (L=100)	73
Figure 5.9	ROC comparisons of SNR versus Pmd (L=100)	74
Figure 5.10	ROC comparisons of P_{fa} versus Pd (L=100)	76
Figure 5.11	ROC comparisons of SNR versus Pd (L=100)	77
Figure 5.12	P_{dTWDP} versus <i>SNR</i> for different values of <i>T</i> and $\Delta = 1$ (OR_OR)	78
Figure 5.13	P_{dTWDP} versus <i>SNR</i> for different values of <i>T</i> and $\Delta = 1$ (OR_AND)	78

List of Tables

Table No.	Name of Table	Pg. No.
Table 3.1	Several phases in the literature review process	49
Table 5.1	Miss-Detection-Probability (P_{md}) values at different SNR (L=100)	75
Table 5.2	Detection-Probability (P_d) values at different (P_{fa}) (L=100)	76

List of Acronyms

RF	Radio Frequency
CR	Cognitive Radio
PU	Primary User (Licensed User)
SU	Secondary User (Unlicensed User)
UWB	Ultra Wide Band
FCC	Federal Communications Commission
ROC	Receiver Operating Characteristics
Tx	Transmitter
Rx	Receiver
PFA	Probability of False Alarm
PD	Probability of Detection
PMD	Probability of Miss Detection
CRN	Cognitive Radio Network
WRAN	Wireless Regional Area Network
M2M	Machine to Machine
AWGN	Additive White Gaussian Noise
SNR	Signal to Noise Ratio
ADC	Analog to Digital Convertor
MFD	Matched Filter Detection
BPF	Band Pass Filter
CFD	Cyclic Frequency Domain
CAF	Cyclic Auto-correlation Function
CFD	Cyclo-stationary Feature base Detection
CRU	Cognitive Radio User
TWDP	Two Waves with Diffuse Power
SS	Spectrum Sensing
CSS	Cooperative Spectrum Sensing
FC	Fusion Center
DGF	Dynamic Group Fusion
LAN	Local Area Network
C_CSS	Centralized Cooperative Spectrum Sensing

DCSS	Decentralized Cooperative Spectrum Sensing
SLC	Square Law Combining
MRC	Maximum Ratio Combining
СН	Cluster Head
ED	Energy Detection
FTR	Fluctuating Two Ray
PDF	Probability Density Function
LoS	Line of Sight

List of Symbols

P_d	Probability of detection
P_{fa}	Probability of false alarm
P_{md}	Probability of miss detection
H_0	Null hypothesis
H_1	Alternative hypothesis
n(k)	Additive white Gaussian noise
h	Channel gain
δ_w	Variance
T_{ED}	Testing matrix of energy
γ	Predetermined threshold
$Q(\cdot)$	Marcum Q-function
D	Distance between PU and SU
$\Gamma(\cdot)$	Complete gamma function
ρ	Signal to noise ratio
Т	Specular to diffuse power ratio
Δ	Specular to peak average power
q	Approximation coefficient
X(n)	Sample of primary user signal
n	Number of samples for observation
L	Total number of Secondary users (Cognitive users)
l	Number of Group (Cluster)
Γ(.,.)	Incomplete gamma function
<i>y</i> (<i>n</i>)	Received signal at secondary user
TB	Time bandwidth product
u_1 , u_2	Two Specular components
Ε	Energy of primary user signal
σ	Standard deviation

Abstract

The constant improvement of wireless devices and technology is a direct result of the ever-increasing popularity of wireless channels of communication. With the expanded variety of products and services that may be offered thanks to the modern integration and compatibility of wireless technologies, there is a great need for effective access to the radio frequency spectrum. In order to combat the obvious spectrum underutilization brought on by the rigid spectrum allotment, cognitive radio (CR), a novel notion of reusing licensed spectrum in an opportunistic way, holds great promise. Cognitive radio (CR) is defined by the Federal Communications Commission (FCC) as "a radio or system that detects its command and control electromagnetic environment and can adaptively and independently modify its radio operating condition to reconfigure network operation, such as to maximize throughput, reduce environmental interference, enable interconnectivity, and connect secondary markets."

CR entails a radio channel setup where the transmitting and receiving devices are able to logically perceive a band of spectrum to determine if it is currently in use. Without disrupting the currently used band, it's able to be switched instantly to the next accessible one. This reduces interruption to primary users while allowing secondary users to make better utilization of the spectrum of radio frequencies. Avoiding interference requires first sensing the specific band of the electromagnetic spectrum. Consequently, cognitive radio's spectrum sensing plays one of the primary roles, as it keeps an eye on the frequencies that aren't being used at any given moment.

Spectrum sensing wherein CR operates independently is referred to as single user sensing or non-co-operative spectrum sensing. Non-co-operative spectrum sensing has some limitations, such as noise inconsistency, fading, and effect of shadow. The answer to these issues can be found in co-operative spectrum sensing (CSS). CSS takes the results from multiple SUs and averages them to make a better judgment. CSS allows the user to detect the spectrum by using a common receiver. It has also been divided into De-centralized CSS (D_CSS) and centralized CSS (C_CSS).

This dissertation compares both ideas by using a set of rules to determine whether a licensed user is present. There is thousands of equipment in certain networks which

are linked to each other in order to share the spectrum. It means that the congestion is a real issue. The very worst scenario of fading in radio connectivity, as anticipated by such Rayleigh scenario, is observed in real-world deployments of sensing devices in metallic protective measure. Hyper-Rayleigh faded channels constitute the most common method of fading in this situation because of their small scale propagations. The two-waves-with-diffuse-power model best describes this phenomenon. In this dissertation clustering based algorithm has be used to the improve the detection performance in many ways such as, minimizes the chances of missed-detection, reducing wrong detection, high detection-probability, fewer power consumption, increased adaptability, Better collision avoidance etc.

This dissertation focuses on D-CSS using clustering approach over TWDP fading channels using two-stage hard decision algorithms using AND & OR decision scheme. We derived the modified hard decision schemes such as OR_OR, OR_AND, AND_OR, and AND_AND for the proposed D—CSS approach from the conventional centralized CSS model. The chances of missed detection at a different SNR values is evaluated for the proposed D_CSS approach with clustering strategy and compared it with conventional centralized-CSS model without employing clustering strategy. To accomplish this scenario, we simulated the result and get different ROC graphs for the different number of SUs. The results of these simulations reveal that the OR_AND decision logic achieves the lowest P_{md} values when compared with the various decision logics presented in the ROC graph. Attaining the least missed-detection probability will result in improved detector performance.

In this dissertation previous standard result of ED based spectrum sensing over AWGN, Rayleigh; wei-bull fading channels are compared with TWDP fading scenario. Out of these all results, the OR_AND decision gives better performance at various SNR levels. The suggested method with AND_AND logic over TWDP fading enhances detection efficiency by up to 30% for SNR values between -20dB and -17dB as compared to the wei-bull fading scenario. According to our findings for different values of *T* and Δ for TWDP fading scenario, secondary users can save the energy needed to meet the minimum SNR required for detection-probability.