Contents

Title	Content	Pg.No.
	Declaration by the Candidate	I g.140.
	Certificate of Supervisor	II
	Thesis Approval Form	III
	Declaration by Research Scholar - Submission of Thesis	IV
	Acknowledgement	V
	Contents	VI
	List of Figures	VIII
	List of Tables	X
	Abstract	XI
Chapter : 1	Introduction	1
	1.1 Background and Motivation	1
	1.2 Problem Statement	4
	1.3 Objectives	5
	1.4 Scope and Limitations	7
	1.5 Thesis Structure	9
Chapter : 2	Literature Review	13
	2.1 Pneumonia and its Diagnostic Challenges	13
	2.2 Medical Imaging in Pneumonia Diagnosis & Other	
	applications for image analysis	20
	2.3 Deep Learning for Medical Image Analysis	22
	2.4 Convolutional Neural Networks (CNN)	23
	2.5 Multimodal Learning Approaches	26
, , , , , , , , , , , , , , , , , , ,	2.6 Transfer Learning in Medical Image Analysis	28
	2.7 Summary& Research Findings	29
Chapter: 3	Methodology	55
	3.1 Dataset Collection and Preprocessing	56

Title	Content	Pg.No.
	3.2 Deep Convolutional Neural Networks	62
	3.3 Multimodal Fusion Techniques	71
	3.4 Transfer Learning for Pneumonia Detection	73
	3.5 Model Training and Evaluation	76
	3.6 Performance Metrics	78
	3.7 Ethical Considerations	83
	3.8 Summary	85
Chapter : 4	Experimental Results and Analysis	87
	4.1 Description of Experimental Setup	88
	4.2 Model Selection	102
	4.3 Transfer Learning	104
	4.4 Attention Mechanism	105
	4.5 Dataset &Algorithm	110
	4.6 Results, Evaluation and Comparison	112
Chapter : 5	Conclusion and Future Work	119
	5.1 Summary of Contributions	119
	5.2 Limitations and Challenges	120
	5.3 Future Directions	122
	5.4 Conclusion	124
	Bibliography	127
Appendix A	Plagiarism Report	137
Appendix B	Publications	139

List of Figures

Figure No.	Name of the Figure	P	g. No
Figure 1.1	Structure of the thesis		10
Figure 2.1	X-Ray of Normal, Pneumonia, COVID-19 Patient		17
Figure 2.2	Chest CT Findings of Patients Infected With Novel		17
	CoronavirusPneumonia		
Figure 2.3	Lung ultrasound for the diagnosis of pneumonia in children		18
Figure 2.4	Chest MRI of patients with COVID-19		18
Figure 2.5	Laboratory diagnosis of pneumonia in the molecular age		19
Figure 2.6	Transfer Learning Process		25
Figure 2.7	Markov random field method for image style		43
Figure 3.1	The workflow of the proposed methodology		55
Figure 3.2	Proposed CNN architecture		56
Figure 3.3	Model Block Diagram for Pre-Processing		59
Figure 3.4	Data Augmentation in machine learning		59
Figure 3.5	Splitting of a dataset into training, testing, and validation		60
	datasets		
Figure 3.6	Example of balanced and imbalanced data		60
Figure 3.7	Example of data shuffle		62
Figure 3.8	VGG-Net Architecture Explained		63
Figure 3.9	Residual learning building block that is used in ResNets		64
Figure 3.10	Inception module of InceptionNet		65
Figure 3.11	Densely Connected Convolutional Networks in Tensorflow		65
Figure 3.12	Model Scaling		66
Figure 3.13	The framework based on transfer learning with attention		67
	mechanism with pneumonia		
Figure 3.14	PretrainedResNet with changed classifier on ImageNet		69
Figure 3.15	PretrainedDenseNet with changed classifier on Chest X-ray14		70
Figure 3.16	Multimodal fusion with deep neural networks		71
Figure 3.17	Image processing and feature extraction		74

Figure No.	Name of the Figure	Pg. No.
Figure 3.18	Image Fine tuning	75
Figure 3.19		76
Figure 3.20	Model training process	77
Figure 3.21	Matrix of relationships between actual and model-predicted answers	78
Figure 3.22	PR Curve sample	81
Figure 3.23	ROC Curve sample	82
Figure 4.1	Training Model & Testing Model	88
Figure 4.2	Sample for testing, validation & testing dataset	95
Figure 4.3	Data Cleaning Steps	96
Figure 4.4	Data Augmentation examples	96
Figure 4.5	Understanding Undersampling& Oversampling	97
Figure 4.6	Balancing classification for imbalance dataset	97
Figure 4.7	Feature Normalization Example	98
Figure 4.8	Lable Encoding Example	98
Figure 4.9	Summary of the benefits of feature selection	99
Figure 4.10	PretrainedResNet with changed classifier on ImageNet	103
Figure 4.11	DenseNet - PretrainedDenseNet with changed classifier on Chest	104
	X-ray14 of NIH	
Figure 4.12	Overall process of transfer learning	105
Figure 4.13	Overall process of Self-Attention	107
Figure 4.14	Overall process of SENet	108
Figure 4.15	Overall process of ECA	109
Figure 4.16	A sample of dataset	110
Figure 4.17	The workflow of the proposed methodologys	112
Figure 4.18	Matrix of relationships between actual and model-predicted	113
	2 TOUVIONO	113

List of Tables

Table No.	Name of Table	Pg. No
Table 4.1	The splits of the pneumonia datasets from Guangzhou Women and	111
	Children's Medical Center	
Table 4.2	Number of samples for train and test split	111
Table 4.3	Summary of Deep-CNN related work	111
Table 4.4	Comparison of different CNN, transfer learning models and	115
	models with different attention mechanisms on the test dataset in	
	terms of performance metrics	
Table 4.5	Comparative results for other models on same test dataset. Bold	116
	numbers indicate best performance	