Contents

Title	Content	Pg. No.
	Declaration by Research Scholar-Originality of Research Work	I
	Certificate of Supervisor	II
	Thesis Approval Form	III
	Declaration by Research Scholar – Submission of Thesis	IV
	Acknowledgement	V
	Contents	VII
	List of Figures	X
	List of Tables	XII
	Abstract	XIV
Chapter: 1	Introduction	1
	1.1 Motivation and Background	1
	1.2 Aim and Objectives	2
	1.2.1 Saving of Water	2
	1.2.2 Saving of Electricity & Decrease Pollution	2
	1.2.3 Save crops regarding moisture deficiency	3
	1.2.4 Make Eco-System healthy	4
	1.2.5 Develop a Remote Sensing and cost-effective system	4
	with accurate decision support arrangement.	
	1.3 Overview of IoT based Healthy Eco-System	6
	1.4 Advantages and Applications of IoT Based Eco-System	7
	1.4.1 Effectual Resource Exploitation	8
	1.4.2 Decrease Human Monitoring	8
	1.4.3 Save Time	8
	1.4.4 Improve Data Gathering	8
	1.4.5 Enhance Security	8
	1.5 Organization of Thesis	8
Chapter: 2	Literature Survey	11
	2.1 Introduction	11
	2.2 Background	12
	2.2.1 Precision Agriculture	12
	2.2.2 Internet of Things	12

	2.3 Recent Research	12
	2.3.1 Plant Diseases Identification	16
	2.3.2 Soil Moisture Prediction	30
	2.4 Research Gaps	37
	2.5 Encapsulation	38
Chapter: 3	Crop Diseases Identification	41
	3.1 Introduction	41
	3.2 Steps By Step Procedure for Crop Diseases Identification	42
	3.2.1 Image Attainment	42
	3.2.2 Image Pre-Processing	43
	3.2.3 Feature Engineering	43
	3.2.4 Classification	43
	3.2.4.1 Diseases Identification Approaches	44
	3.2.4.2 Image Processing Approach	44
	3.2.4.3 ML/DL Approach	44
	3.3 Some Admired ML/DL Techniques	45
	3.3.1 Decision Tree (DT)	45
	3.3.2 Support Vector Machine (SVM)	47
	3.3.3 Convolutional Neural Network	48
	3.4 Scratch Learning and Transfer Learning	49
	3.5 Experimental Settings	51
	3.5.1 Material Analysis	51
	3.5.2 Model Development	52
	3.5.3 CNN Approach	53
	3.5.4 Optimizer Function	54
	3.5.5 Model Developing Process	55
	3.5.6 Test Result Examination for Maize Crop Dataset	56
	3.5.7 Model Generalization	58
	3.5.8 Results Analysis and Outcome Discussions	64
Chapter: 4	Soil Moisture Predictions	67
	4.1 Introduction	67
	4.2 Gallipoli Weather and Agriculture	69
	4.3 Materials and Methods	73

	4.3.1 Dataset Summary	73
	4.3.2 Dataset Preprocessing and Performance Estimation	73
	4.3.3 Heatmap and Pair plot for Gallipoli Weather Dataset	78
	4.4 Model Development	79
	4.5 Steps By Step Procedure for Preparing a Model	82
	4.6 Outcomes with Hyper Parameter Tuning	83
	4.7 Linear Regression	84
	4.7.1 Different LR Techniques Analysis for Soil Moisture	86
	Prediction	
	4.8 SVM Based Model	87
	4.9 Comparison of Different ML Based Models	88
Chapter: 5	IoT Based Decision Support System	91
	5.1 Introduction	91
	5.2 Tools and Components	91
	5.3 Schematic Design	92
	5.4 Forecasting Soil Moisture for Real Time Data	97
	5.5 Upshots for the Real Time Data	100
	5.6 Diseases Identification by Proposed DSS	101
	5.7 System Investigation for Jasminum Sambac	102
	5.7.1 Image Collection and Scrutinization	102
	5.7.2 Outcomes of Model for Jasminum Sambac	103
	Conclusion	105
	Summary	107
	Bibliography	109
Appendix A	Plagiarism Report	133
Appendix B	Publication	134