
Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 62 of 245

Chapter 4

Development of Plant Foliar Disease Identification Model

(PFDIM)

4.1 Introduction

This chapter discusses development process of Plant Foliar Disease Identification

Model (PFDIM). To implement Leaf Diseases Recognition System Engine (LDRSE) it

requires database of Mung bean plant leaf as initial step. This chapter discuss the

process of collecting healthy and diseased Mung leaf images. Numerous other

operations required are pre-processing, feature extraction, classification and

recognition.

Figure 4.1 shows the schematic diagram of the Mung Leaf disease detection

system. First images acquired from various crop fields, next dataset is created, after

creating dataset pre-processing steps performed on dataset images. Then dataset is

Figure 4.1: Schematic Diagram of Mung Leaf Disease Detection System

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 63 of 245

divided into training and testing sets. After division image is passed to classifier i.e.

SVM or CNN and finally the classification is performed.

4.2 Mung Leaf Data Collection

For proposed work researcher has collected Leaf data samples of Mung leaf in two

different environments namely controlled and uncontrolled. In controlled environment

image contains a single mung leaf with white background and in uncontrolled

environment image contains multiple leaves along with soil and other objects as

background.

Researcher intends to test proposed model in three ways:

(1) Controlled environment: where image with single leaf and no noise is used, i.e. leaf

with white background.

(2) Uncontrolled environment: where image along with mung leaf contains

background noise like soil, stem, other mung leaves, etc.

(3) Combined environment: where both the controlled and uncontrolled environment

images are combined.

All images are stored in .jpg format. Figure 4.2 displays images of mung leaf of

each category in controlled and uncontrolled environment.

Controlled Environment Uncontrolled Environment

(a)

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 64 of 245

(b)

(c)

(d)

Figure 4. 2: Sample Mung leaf (a) Cercospora Leaf Spot (b) Healthy (c) Powdery
Mildew (d) Yellow Mosaic Virus

Mung leaf Dataset is stored for further input and processing by Leaf Diseases

Recognition System Engine (LDRSE). Researcher has created two directories based on

environment image captured in namely controlled and uncontrolled. Both directories

contains 4 sub directories for each leaf category namely Cercospora, Healthy,

Powdery_Mildew, and Yellow_Mosaic. Each directory contains image files in .jpg

format. Directory wise number of image files are shown in following table 4.1.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 65 of 245

Environme

nt

Cercospor

a

Health

y

Powdery_Milde

w

Yellow_Mosa

ic

Controlled 224 211 225 223

Uncontrolle

d

102 156 41 125

Table 4.1: Directory wise number of image files

Researcher has designed a User Interface to test Plant Foliar Disease Identification

Model (PFDIM) where collected Mung leaf image dataset will be used for testing

performance of proposed model. User Interface is describe in detail in a next section

(section 4.3).

4.3 Designing and Developing Mung Leaf disease Recognition

Interface

For Mung leaf disease Recognition, Researcher has developed an interface named

This interface allows user to choose image file containing Mung leaf and displays

whether it is healthy or diseased with disease category on the screen. Figure 4.3 to 4.7

shows screenshots of Leaf Disease Classification Interface.

4.3.1 Features of Leaf Disease Classification Interface

(1) Provides user options to recognize mung bean plant leaf diseases.

(2) image containing single or multiple leaves.

(3) Process can be achieved by simple clicking on the buttons available in interface

user area.

(4) Interface is designed in such a way that is easy to use for a user who is familiar

with any software application, it does not want additional skills to interact with this

interface.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 66 of 245

Figure 4.3 shows leaf disease classification interface.

Leaf disease classification interface tasks: The task is divided into three parts as:

(1) Input Image (2) Display selected Image (3) Display Output.

Input Image:

leaf from controlled or uncontrolled environment. Figure 4.4

button in interface. When user clicks on this button an open file dialog box will appear

from which user can select an image.

Figure 4. 3: Leaf Disease Detection Interface

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 67 of 245

Display Selected Image:

will appear. User can select desired image from controlled or uncontrolled environment

to check whether the leaf is healthy or diseased, and if leaf is diseased then which

diseases it having. Figure 4.5 shows the open file dialog box.

Figure 4.4: Select an image of mung leaf to test

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 68 of 245

When user select a particular leaf image then that image is displayed in interface.

Figure 4.6 shows selected image displayed in interface.

Figure 4. 5: Open dialog box to browse mung leaf image

Figure 4. 6: Displaying selected leaf image in interface

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 69 of 245

to display the final result; i.e. whether the leaf is healthy or diseased and if diseased

then display the disease category. Figure 4.7 shows the interface displaying the final

result

4.4 Developing Leaf Diseases Recognition System Engine

LDRSE comprises of mainly three steps (1) Pre-processing (2) Feature Extraction

and segmentation and (3) Identification and Classification. Subsection 4.4.1 to 4.4.3

describes in detail each phases of LDRSE.

4.4.1 Pre-processing

Preprocessing step plays important role in Leaf disease identification process, as

resultant image of this process will be considered for feature extraction. This process

involves numerous operations as discussed in following subsections.

Figure 4.7: Final Result

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 70 of 245

4.4.1.1 Resizing an image

Image resizing is necessary when you need to increase or decrease the total number

of pixels of an image. This step helps us to make images of same size. Not all of our

images are of the exact same size we need them to be of the same size. When an image

is resized, its pixel information is changed. For example, if an image is reduced in size,

any unwanted pixel information will be discarded by the photo editor. resize() function

is used to resizing the images. Using resize() each and every images are converted into

size of 256x256. Figure 4.8 and 4.9 represents the original image and image after

converting it into 256x256 size in controlled and uncontrolled environment respectively

Image is converted
into 256*256

(a)

(b)

Figure 4.8: (a) Original image, (b) Resized image in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 71 of 245

Figure 4.10 represents original image and resized image from each category in

controlled and uncontrolled environment.

Original Image Resized Image

Image is
converted into
256*256

(a)

(b)

Figure 4.9: (a) Original image, (b) Resized image in uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 72 of 245

(a) Cercospora leaf disease original image and resized image in controlled and

uncontrolled environment

(b) Healthy leaf original image and resized image in controlled and uncontrolled

environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 73 of 245

(c) Powdery Mildew leaf disease original image and resized image in controlled

and uncontrolled environment

(d) Yellow Mosaic Virus leaf disease original image and resized image in

controlled and uncontrolled environment

Figure 4.10: Original image and resized image from each category in controlled and
uncontrolled environment

4.4.1.2 Augmentation

Augmentation encompasses wide range of techniques used to generate new

training samples from the original ones. It helps us to increase the size of the Dataset

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 74 of 245

for training. Image augmentation artificially creates training images through

combination of multiple transformations.

Transformations applied to an image:

 Translations / Shifts

 Rotations

 Changes in scale

 Shearing

 Horizontal/Vertical flips

Table 4.2 shows the augmented properties applied on the dataset.

Property min max

Width Shift Range 0 0.2

Height Shift Range 0 0.2

Brightness Range 0.8 1.2

Zoom Range 0 0.3

Flip Horizontal Vertical

Table 4.2: Data Augmentation Property

Figure 4.11 and 4.12 represents Original and augmented images in controlled

environment and uncontrolled environment respectively.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 75 of 245

Original Image

Augmented Image

(a)

(b)

Original Image

(a)

(b)

Augmented Image

Figure 4.11: (a) Original Image, (b) Augmented Images in controlled environment

Figure 4.12: (a) Original Image, (b) Augmented Images in uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 76 of 245

Figure 4.13 shows original and augmented images from each category in controlled

and uncontrolled environments.

Original Image Augmented Image

(i) Cercospora Leaf Spot (a) Original and (b) augmented images

(ii) Healthy (a) Original and (b) augmented images

Original Image

(a)

Augmented Image

(b)

Original Image

(a)

(b)

Augmented Image

Original
Image

(a)

(b)

Augmented Image

Original Image

(a)

(b)

Augmented Image

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 77 of 245

(iii) Powdery Mildew (a) Original and (b) augmented images

(iv) Yellow mosaic virus (a) Original and (b) augmented images

Figure 4.13: Original and augmented images in controlled environment and
uncontrolled environments

Since we are dealing with leaf as a main object, performing rotation in

augmentation will not make major changes in it. Like in face detection problem if we

Origina

(a)

(b)

Augmented Image

Original Image

(a)

(b)

Augmented Image

Original Image

(a)

(b)

Augmented Image

Original Image

(a)

(b)

Augmented Image

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 78 of 245

flip image than it is possible that it may not correctly identified by model. But with leaf

there are no issues like this.

4.4.1.3 Edge Detection

An edge is a set of connected pixels that forms a boundary between two disjoint

regions. Edge Detection is a method of segmenting an image into regions of

discontinuity. It is a widely used technique in digital image processing like

Pattern recognition

Image morphology

Feature extraction

Initially edge detection was done using canny() method of canny edge detector.

Figure 4.14 represents the image of original leaf and image after detection of edge in

controlled environment.

(a)

(b)
Figure 4.14: (a) Original Image, (b) Edges Detected from images using Canny()

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 79 of 245

Same method was also used for uncontrolled data but the outcome was not

optimum. Figure 4.15 represents the edge detection in uncontrolled environment.

4.4.2 Feature Extraction and Segmentation

Segmentation is used for locating objects in the image and to detect bounding lines

of the image, background subtraction. Image segmentation is the first step in image

analysis and pattern recognition it is a critical and essential step and is one of the most

difficult tasks in image processing, as it determines quality of the final result of the

analysis [3]. For segmentation two different methods namely HSV color map method

and grabCut() method were used in both the environments controlled and uncontrolled.

4.4.2.1 HSV color map method

To perform segmentation using HSV, first RGB image is converted to HSV image.

For that it will find three colors namely Green, Yellow and Brown from the image. And

finally masking is done with original image. Figure 4.16 shows the steps involved in

HSV color map method in controlled environment.

Figure 4.15: Edges Detected from images using Canny() in uncontrolled environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 80 of 245

HSV color map was applied on uncontrolled data but the final output images are

not giving correct segmented region. Figure 4.17 and 4.18 represents images segmented

using HSV in controlled and uncontrolled environment respectively.

Original Image Image after apply HSV

Input Image

HSV Image

Ouput Image after
masking

Figure 4.16: Steps for HSV color map method

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 81 of 245

(a) (b)

Figure 4. 17: Segmented Images after performing HSV Color map method in
controlled environment: (a) Original Images, (b) Segmented Images

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 82 of 245

Figure 4.18: Uncontrolled environment Leaf images after applying HSV on them

4.4.2.2 grabCut() color map method

Next grabCut() method was applied on both the type of dataset images. GrabCut is

the method to precisely segment the foreground of an image from the background. To

apply grabCut() algorithm accept input image with a bounding box or rectangle which

specifies the location of object in the image to be segmented or accept input image with

a mask that estimated the segmentation. The steps involved in grabCut() are as follows:

 Input leaf image

 Separate foreground and background from image.

 On the basis of data given by user, Computer does an initial labelling. It labels

the foreground and background pixels and perform final masking on image.

 Output (Image after masking)

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 83 of 245

Figure 4.19 shows steps involved in grabCut() method.

Like HSV grabCut() gives comparatively decent results in controlled environment

but failed for uncontrolled environment. Figure 4.20 and 4.21 shows original and

segmented images in controlled and uncontrolled environment using grabCut() method.

Input Image Simple
mask Image

Output
Image after
masking

Separate
background and
foreground

Final mask
Image

Figure 4. 19: Steps for performing grabCut()

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 84 of 245

Figure 4.20: Original and Segmented Images after performing grabCut() method

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 85 of 245

Figure 4.21: Original and Segmented Images after performing grabCut method on
uncontrolled data

4.4.2.3 Applying HOG

In computer vision, Histogram of Oriented Gradients (HOG) is used during object

detection because they act as feature descriptors by focusing on the structure or shape

of the object. To train an SVM and to apply HOG first we have to read image into three-

dimensional numpy array and rescale it to one-third its size. After rescaling the image

is first converted to gray scale before applying the HOG.

labels are mapped to the integers 1 through 4.

4.4.2.3.1 RGB to Grayscale conversion

This phase will convert true color image into grayscale image. Every pixel in

grayscale image will have shade of gray. When RGB is converted to grayscale the

luminance will be reserved and hue and saturation will be abolished. Image in grayscale

occupies a lesser amount of memory area compare to image in RGB [4].

The value of each grayscale pixel is calculated as the weighted sum of the

corresponding red, green and blue pixels as:

Y = 0.2125 R + 0.7154 G + 0.0721 B

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 86 of 245

Figure 4.22 represents original leaf and leaf after converting it to gray scale.

After converting image to gray scale the HOG technique is applied. In the end, a

histogram for each local region of the image is created. Figure 4.23 and 4.24 represents

the gray scale image and HOG image in controlled and uncontrolled environment

respectively.

Image in Grayscale Image after applying HOG

Figure 4.22: Original leaf and gray scale leaf

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 87 of 245

Figure 4.23: leaves after applying HOG in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 88 of 245

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 89 of 245

Figure 4. 24: leaves after applying HOG in uncontrolled environment

When using ConvNets, low preprocessing steps prove to be sufficient to get decent

results. The image is first to read into a 3-dimensional NumPy array and then resized

to a size of 256 x 256 pixels. Data normalization ensures that each pixel of the image

has a similar data distribution and helps to converge faster while training the model.

4.4.3 Training Process

Models were trained in three different environments namely controlled,

uncontrolled and combined environment.

Here, Controlled Environment is a data item (image) that comprises only a single

subject (leaf) and a white background. An image from the controlled environment

contains a single mung leaf at its centre and a white background i.e. no noise.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 90 of 245

The uncontrolled environment contains other background noise like ground, mud,

more leaves etc. along with the subject. In uncontrolled environment only images

captured in uncontrolled environment has been considered. Total 424 images are there

in uncontrolled environment. These images are divided into training and testing sets.

Total 315 images in training and 109 images in testing set.

The combined environment contains both Controlled and Uncontrolled

environments. The dataset has been expanded by merging both the controlled and

uncontrolled environment. Dataset is again split into training and testing. In Combined

environment, there are a total of 1307 images: Cercospora (326), Healthy (367),

Powdery Mildew (266) and Yellow Mosaic (348). Images are split into training (971)

and testing (336) set. Pre-processing steps will remain same again for combined

environment too. Overall training process is described in next section 4.5 in detail.

4.5 Training Process of Classifiers

Machine Learning is a part of Artificial Intelligence that focuses on making

forecasts using algorithms that improve inevitably through experience and by the use

of enough data. Algorithms build an inference model based on training data to simplify

the environment and make forecasts. This method of learning initiates by presenting

training data to search for patterns in the data and make enhanced interpretations in the

future. Machine Learning is mainly categorized into three categories: Supervised,

Unsupervised, and Reinforcement Learning. One of the applications of Machine

Learning is classifying a given data point/item into particular categories based on

previous observations. This leads to a fascinating idea if Machine Learning could be

used in the field of agriculture. Here we try to classify a mung leaf to check if it is

healthy or infected with a disease.

4.5.1 Classification in Machine Learning

Classification in Machine Learning supposes a predictive modelling problem

where a label is predicted for a given input. The trained model is expected to estimate

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 91 of 245

a mapping function from input data to separate categories. For example problems like

whether an email is a spam email or not, if it will rain or not, identifying a digit etc.

4.5.2 Support Vector Machines (SVM)

Support Vector Machines (SVMs) is a model that can be used for both

classification and regression. The algorithm tries to find a decision boundary, or a

hyperplane when data is represented in more than two dimensions that separates the

classes. SVM is a statistical learning based classification technique in which a function

that defines a hyperplane for optimum separation of classes is determined. Linear

function is not capable to model such separation every time, data are mapped into new

feature space and a dual illustration is used with the data objects characterized by their

dot product. For mapping of original space to kernel space a kernel function is used and

can be of various forms, hence providing the capability to handle nonlinear

classification problems. The kernels can be seen as a mapping of nonlinear data to a

higher dimensional feature space while providing a computation shortcut by letting

linear algorithms to work with higher dimensional feature space. The support vector is

defined as the reduced training data from the kernel. The below figure 4.25 shows the

principle of applying a kernel function to achieve separability.

SVM will examine this new space for the samples that lie on the border line among

the classes, i.e. to search the samples that are perfect for separating the classes; these

samples are called support vectors. The Support Vector Machine (SVM) is a powerful

Figure 4.25: Graphic representation of the SVM method

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 92 of 245

distribution-free classifier that has been widely used in the present decade for resolving

numerous image classification problems.

4.5.2.1 Training process for SVM

Steps involved in SVM are as follows:

Step 1: Import Libraries

Step 2: Convert Image to Grayscale

Step 3: Perform feature extraction using HOG (Histogram of oriented gradients)

Step 4: Create image features

Step 5: Split into train and test sets

Step 6: Train model (Initializing the SVM classifier)

Step 7: Score model

Step 8: Plot learning curve

Step 9: Tune the hyperparameters

4.5.2.1.1 Training process for SVM in controlled environment

To handle nonlinear input spaces, the SVM uses a kernel trick to map the data to a

higher dimension so that it is possible to find a hyperplane that divides the different

classes.

Sklearn.svm.SVC provides a Support Vector Classifier.

An SVC with a polynomial kernel and the regularization parameter C is set to 0.02

classification on all the classes one by one for multiclass classification. Each binary

classification predicts one class label and the model with the most predictions is

predicted by the one by one strategy. SVM after training yielded a test accuracy of

86.9%. Figure 4.26 represents the confusion matrix for SVM in controlled environment.

Figure shows that for Cercospora disease (True positive) 50 data points were correctly

classified by the model. 6 data points were incorrectly classified by the model.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 93 of 245

Similarly for Yellow mosaic disease (True positive) 43 data points were correctly

classified by the model. 13 data points were incorrectly classified by the model.

Legends

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.26: Confusion Matrix (Controlled environment)

Below Table 4.3 shows classification report for SVM in controlled environment.

SVM secures overall 87.00% accuracy in controlled environment.

Classification Report:

Precision recall f1 - score support

0 0.82 0.89 0.85 56

1 0.86 0.94 0.90 53

2 0.93 0.88 0.90 57

3 0.88 0.77 0.82 56

accuracy 0.87 222

macro avg 0.87 0.87 0.87 222

weighted avg 0.87 0.87 0.87 222

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 94 of 245

Table 4.3: Classification report for SVM in controlled environment

To regularize the effect of overfitting, different values for the regularization

parameter and other hyperparameters are tried. Grid Search is used to find the

hyperparameters that yield better accuracy and does not overfit. The following Table

4.4 shows the values of the hyperparameters set on which Grid Search is performed

with 5-fold cross-validation.

C (reg. parameter) {0.1, 0.2, 0.5, 1, 10}

Gamma {1, 0.1, 0.01, 0.001, 0.0001}

Kernel {linear, RBF, sigmoid, poly}

Degree {3, 4}

Strategy {one vs. one, one vs. rest}

Table 4.4: Parameter Grid (Controlled SVC)

The best parameters were:

Training accuracy of the model reached 100% and test accuracy fell to 86.4% when

the results of the grid search were applied.

4.5.2.1.2 Training process for SVM in uncontrolled environment

To train SVM for uncontrolled environment all the pre-processing steps and values

remains same as the controlled environment. The SVM algorithm steps include the

following:

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 95 of 245

First we have to load the important libraries. Next perform feature extraction using

HOG. Next import the dataset. In next step divide the dataset into train and test. Next

Initializing the SVM classifier model. After initializing the model, fitting the SVM

has been evaluated. In last parameter tuning is done. There are mainly three crucial

parameters that need to be tuned. Kernel, regularization parameter and gamma.

and 63.88% has been achieved respectively. The model has been overfitted.

Figure 4.27 represents the confusion matrix for SVM in uncontrolled environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4. 27: Confusion Matrix (Uncontrolled environment)

Below Table 4.5 shows classification report for SVM in uncontrolled environment.

SVM secures overall 64.00% accuracy in uncontrolled environment.

Classification Report:

Precision recall f1 - score support

0 0.56 0.38 0.45 26

1 0.64 0.87 0.74 39

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 96 of 245

2 0.57 0.36 0.44 11

3 0.70 0.66 0.68 32

accuracy 0.64 108

macro avg 0.62 0.57 0.58 108

weighted avg 0.63 0.64 0.62 108

Table 4.5: Classification report for SVM in uncontrolled environment

To regularize the effect of overfitting, different values for the regularization

parameter and other hyperparameters are tried. Grid Search is used to find the

hyperparameters that yield better accuracy and does not overfit. The following Table

4.6 shows the values of the hyperparameters set on which Grid Search is performed

with 5-fold cross-validation:

Hyperparameters Values

C (reg. parameter) {0.1, 0.2, 0.5, 1, 10}

Gamma {1, 0.1, 0.01, 0.001, 0.0001}

Kernel {linear, RBF, sigmoid, poly}

Degree {3, 4}

Strategy {one vs. one, one vs. rest}

Table 4.6: Parameter Grid (Uncontrolled SVC)

The best parameters were:

Training accuracy of the model reached 100% and test accuracy fell to 89% when

the results of the grid search were applied.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 97 of 245

4.5.2.1.3 Training process for SVM in combined environment

An SVC is trained with a polynomial kernel and a regularization parameter C 0.02.

used for multiclass classification. After training the model, a

training and testing accuracy of 99.76% and 73.00% has been achieved respectively.

The model has again been overfitted. Figure 4.28 represents the confusion matrix for

SVM in combined environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.28: Confusion Matrix (Combined environment)

Below table 4.7 shows classification report for SVM in combined environment.

SVM secures overall 73.00% accuracy in combined environment.

Classification Report:

 Precision recall f1 - score support

0 0.72 0.71 0.72 82

1 0.77 0.77 0.77 92

2 0.92 0.66 0.77 68

3 0.61 0.76 0.68 88

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 98 of 245

accuracy 0.73 330

macro avg 0.76 0.73 0.73 330

weighted avg 0.75 0.73 0.73 330

Table 4.7: Classification report for SVM in combined environment

To regularize the effect of overfitting, different values for the regularization

parameter and other hyperparameters are tried. Grid Search is used to find the

hyperparameters that yield better accuracy. The following Table 4.8 shows the values

of the hyperparameters set on which Grid Search is performed with 5-fold cross-

validation:

C (reg. parameter) {0.1, 0.2, 0.5, 1, 10}

Gamma {1, 0.1, 0.01, 0.001, 0.0001}

Kernel {linear, RBF, sigmoid, poly}

Degree {3, 4}

Strategy {one vs. one, one vs. rest}

Table 4.8: Parameter Grid (Combined SVC)

The best parameters were:

C = 10

Gamma = 0.01

Degree = 3

Training accuracy of the model reached 99.90% and test accuracy fell to 89.00%

when the results of the grid search were applied.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 99 of 245

4.5.3 K-Nearest Neighbor (KNN)

KNN is one of the direct, agile and easy to understand classification method. It is

deliberated as the upmost learning algorithms used in a diversity of applications and

used in both classification and regression problems. KNN is also renowned as a lazy

learning and non parametric algorithm. The significance of non-parametric is no

presumption for the distribution of primary data. Simply, the dataset is castoff to make

the organization of the model. KNN classifier is very appropriate in conditions like

when real-world datasets are not expressed by mathematically or any theoretical

hypothesis. Lazy algorithm specifies that KNN has not prepared any model structure

by administering the training samples and nearly complete training samples are used at

the time of testing. The presented method specifically creates faster training phase but

makes the costlier and slower testing. The meaning of testing period is costlier is that

the structure spent loads of time in examining complete training samples and desired

greater memory space for keeping all samples for testing (Hazra et al., 2017),

(AlKhateeb et al., 2009).

Here K in K-NN specifies the amount of nearby neighbors which is the main

important part of the decision factor. Preferable value for k is odd value. If the value

for k is even then there is a possibility of the tie. If K = 1, that indicates to allocate a

label to an unidentified pattern by the most nearby training sample class.

Figure 4. 29: K-NN classifier

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 100 of 245

For an unknown pattern X it is required to forecast the class label. For that first

define one nearest point to X and after that the same class label allotted to X. Above

figure 4.3 displays two categories A and B using red and green color respectively and

new data is shown by blue color circle. If value of k is taken 1, then the new data has

been allocated to category A as shown in figure 4.29 (a) and if value of k is taken 3,

then category B is allocated to a new data as shown in figure 4.29 (b), since from nearby

three data, majority data are from class B

4.5.3.1 Training process for KNN

The process of KNN classification involved following steps:

Step 1: Input training dataset, new data

Step 2: class label to the new data

Step 3: fill the data

Step 4: Initialize the value of k for selecting the total number of neighbors

Step 5: Determine the distance between the new data and the training set.

Step 6: Apply categorization on all collected distance value and also arrange them into

ascending order with its labels.

Step 7: Select the first k values from the list.

Step 8: Acquire first k entries labels

Step 9: Apply simple majority rule and allocate the class label to a new data.

KNN is applied with same preprocessing steps as applied on SVM. KNN is applied

4.5.3.1.1 Training process for KNN in controlled environment

Figure 4.30 represents the confusion matrix of KNN for k = 15 in controlled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 101 of 245

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.30: Confusion matrix KNN [controlled environment]

Below Table 4.9 shows classification report of KNN for k = 15 in controlled

environment. KNN secures overall 68.38% training and 64.41% testing accuracy in

controlled environment.

Classification Report:

 Precision recall f1 - score support

0 0.80 0.66 0.73 56

1 0.91 0.38 0.53 53

2 0.62 0.68 0.65 57

3 0.52 0.84 0.64 56

accuracy 0.64 222

macro avg 0.71 0.64 0.64 222

weighted avg 0.71 0.64 0.64 222

Table 4.9: Classification report for KNN [controlled environment]

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 102 of 245

4.5.3.1.2 Training process for KNN in uncontrolled environment

 Figure 4.31 represents the confusion matrix of KNN for k = 15 in uncontrolled

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.31: Confusion matrix for KNN in uncontrolled environment.

Below table 4.10 shows classification report of KNN for k = 15 in uncontrolled

environment.

Classification Report:

 Precision recall f1 - score support

0 0.29 0.42 0.34 26

1 0.54 0.56 0.55 39

2 0.24 0.64 0.35 11

3 0.00 0.00 0.00 32

accuracy 0.37 108

macro avg 0.27 0.41 0.31 108

weighted avg 0.29 0.37 0.32 108

Table 4.10: Classification report for KNN in uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 103 of 245

KNN secures 43.03% training and 37.03% testing accuracy in uncontrolled

environment.

4.5.3.1.3 Training process for KNN in combined environment

Figure 4.32 represents the confusion matrix of KNN for k = 15 in combined

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.32: Confusion Matrix for KNN in combined environment

Below table 4.11 shows classification report of KNN for k = 15 in combined

environment.

Classification Report:

 Precision recall f1 - score support

0 0.72 0.71 0.72 82

1 0.77 0.77 0.77 92

2 0.92 0.66 0.77 68

3 0.61 0.76 0.68 88

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 104 of 245

accuracy 0.73 330

macro avg 0.76 0.73 0.73 330

weighted avg 0.75 0.73 0.73 330

Table 4.11: Classification report for KNN in combined environment

KNN secures 99.59% training and 73.03% testing accuracy in combined environment.

4.5.4 Adaptive Boosting (AdaBoost)

AdaBoost is a special type of boosting algorithm. It is based on the idea of creating

weak learners and slowly learning. It is an iterative technique. It reduces the biasing

error. If an observation was classified wrongly, then it increases or boosts the weight

of that observation. Figure 4.33 represents the sample methodology of how AdaBoost

classifier works.

Figure 4.33: AdaBoost Classifier

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 105 of 245

4.5.3.3 Training process for AdaBoost

Step 1: Import libraries

Step 2: Load the data

Step 3: Split into train and test sets

Step 4: Fitting the model

 base_estimator: It is a weak learner used to train the model.

 n_estimators: Number of weak learners to train in each iteration.

 learning_rate: It contributes to the weights of weak learners. It uses 1 as a

default value.

Step 5: Making the predictions

Step 6: Evaluating the model

4.5.3.3.1 Training process for AdaBoost in controlled environment

Figure 4.34 represents the confusion matrix of AdaBoost in controlled

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.34: Confusion Matrix for AdaBoost in controlled environment

Below table 4.12 shows classification report of AdaBoost in controlled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 106 of 245

Classification Report:

 Precision recall f1 - score support

0 0.79 0.27 0.40 56

1 0.46 0.64 0.54 53

2 0.82 0.63 0.71 57

3 0.39 0.59 0.47 56

accuracy 0.53 222

macro avg 0.61 0.53 0.53 222

weighted avg 0.62 0.53 0.53 222

Table 4.12: Classification report for AdaBoost in controlled environment

AdaBoost secures 65.05% training and 53.15% testing accuracy in controlled

environment.

4.5.3.3.2 Training process for AdaBoost in uncontrolled environment

Figure 4.35 represents the confusion matrix of AdaBoost in uncontrolled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 107 of 245

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.35: Confusion Matrix for AdaBoost in uncontrolled environment

Below table 4.13 shows classification report of AdaBoost in uncontrolled

environment.

Classification Report:

 Precision recall f1 - score support

0 0.33 0.04 0.07 26

1 0.37 0.97 0.54 39

2 1.00 0.09 0.17 11

3 0.50 0.03 0.06 32

accuracy 0.38 108

macro avg 0.55 0.28 0.21 108

weighted avg 0.46 0.38 0.25 108

Table 4.13: Classification report for AdaBoost in uncontrolled environment

AdaBoost secures 49.36% training and 37.96% testing accuracy in uncontrolled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 108 of 245

4.5.3.3.3 Training process for AdaBoost in combined environment

Figure 4.36 represents the confusion matrix of AdaBoost in combined

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.36: Confusion Matrix for AdaBoost in combined environment

Below table 4.14 shows classification report of AdaBoost in combined

environment.

Classification Report:

 Precision recall f1 - score support

0 0.67 0.40 0.50 82

1 0.43 0.66 0.52 92

2 0.88 0.41 0.56 68

3 0.40 0.49 0.44 88

accuracy 0.50 330

macro avg 0.59 0.49 0.51 330

weighted avg 0.57 0.50 0.50 330

Table 4.14: Classification report for AdaBoost in combined environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 109 of 245

AdaBoost secures 60.18% training and 50.00% testing accuracy in combined

environment.

4.2.5 Gaussian Naive Bayes (GaussianNB)

A Gaussian Naive Bayes algorithm is a special kind of Naïve Bayes algorithm.

GaussianNB is explicitly used when the features have continual values. It is also

expected that all the data from each label is drawn from a simple Gaussian distribution

and features are following a gaussian distribution i.e, normal distribution.

4.5.3.4 Training process for GaussianNB

Steps involved in GaussianNB are as follows:

Step 1: Load important Libraries

Step 2: Import Dataset

Step 3: Perform preprocessing steps on images

Step 4: Split the dataset into training and testing sets

Step 5: Apply Sklearn Gaussian Naive Bayes Model

Step 6: Performance evaluation

4.5.3.4.1 Training process for GaussianNB in controlled environment

Figure 4.37 represents the confusion matrix of GaussianNB in controlled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 110 of 245

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.37: Confusion Matrix for GaussianNB in controlled environment

Below table 4.15 shows classification report of GaussianNB in controlled

environment.

Classification Report:

 Precision recall f1 - score support

0 0.91 0.55 0.69 56

1 0.81 0.72 0.76 53

2 0.73 0.81 0.77 57

3 0.53 0.73 0.61 56

accuracy 0.70 222

macro avg 0.74 0.70 0.71 222

weighted avg 0.74 0.70 0.71 222

Table 4.15: Classification report for GaussianNB in controlled environment

GaussianNB secures 70.95% training and 70.27% testing accuracy in controlled

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 111 of 245

4.5.3.4.2 Training process for GaussianNB in uncontrolled environment

Figure 4.38 represents the confusion matrix of GaussianNB in uncontrolled

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.38: Confusion Matrix for GaussianNB in uncontrolled environment

Below table 4.16 shows classification report of GaussianNB in uncontrolled

environment.

Classification Report:

 Precision recall f1 - score support

0 1.00 0.12 0.21 26

1 0.63 0.56 0.59 39

2 0.23 0.64 0.34 11

3 0.53 0.66 0.58 32

accuracy 0.49 108

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 112 of 245

macro avg 0.60 0.49 0.43 108

weighted avg 0.65 0.49 0.47 108

Table 4.16: Classification report for GaussianNB in uncontrolled environment

GaussianNB secures 63.29% training and 49.07% testing accuracy in uncontrolled

environment.

4.5.3.4.3 Training process for GaussianNB in combined environment

Figure 4.39 represents the confusion matrix of GaussianNB in combined

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.39: Confusion Matrix for GaussianNB in combined environment

Below table 4.17 shows classification report of GaussianNB in combined

environment.

Classification Report:

 Precision recall f1 - score support

0 0.53 0.48 0.50 82

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 113 of 245

1 0.61 0.30 0.41 92

2 0.56 0.59 0.58 68

3 0.42 0.67 0.52 88

accuracy 0.50 330

macro avg 0.53 0.51 0.50 330

weighted avg 0.53 0.50 0.49 330

Table 4.17: Classification report for GaussianNB in combined environment

GaussianNB secures 59.57% training and 50.30% testing accuracy in combined

environment.

4.2.6 DTC

The decision tree classifier generates the classification model by constructing a

decision tree. Every node in the tree identifies a test on an attribute, every branch sliding

from that node corresponds to one of the probable values for that attribute. The logic

after the decision tree is simple and easy to understand because it displays a tree-like

structure. Figure 4.40 represents the classification of a leaf based on its color value

using Decision Tree Classification.

Figure 4.40: Decision Tree Classification

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 114 of 245

4.5.3.5 Training process for DTC

Step-1: Initiate the tree with the root node, which holds the whole dataset.

Step-2: Discover the finest attribute in the dataset using Attribute Selection Measure

(ASM).

Step-3: Distribute the dataset into subsets that encloses probable values for the finest

attributes.

Step-4: Create the decision tree node, which holds the finest attribute.

Step-5: Recursively create new decision trees using the subsets of the dataset formed in

step -3. Endure this procedure till a stage is touched where you cannot further classify

the nodes and called the final node as a leaf node.

4.5.3.5.1 Training process for DTC in controlled environment

Figure 4.41 represents the confusion matrix of DTC in controlled environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.41: Confusion Matrix for DTC in controlled environment

Below table 4.18 shows classification report of DTC in controlled environment.

Classification Report:

 Precision recall f1 - score support

0 0.56 0.52 0.54 56

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 115 of 245

1 0.37 0.38 0.37 53

2 0.61 0.47 0.53 57

3 0.50 0.64 0.56 56

accuracy 0.50 222

macro avg 0.51 0.50 0.50 222

weighted avg 0.51 0.50 0.50 222

Table 4.18: Classification report for DTC in controlled environment

DTC secures 85.32% training and 50.45% testing accuracy in controlled

environment.

4.5.3.5.2 Training process for DTC in uncontrolled environment

Figure 4.42 represents the confusion matrix of DTC in uncontrolled environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.42: Confusion Matrix for DTC in uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 116 of 245

Below table 4.19 shows classification report of DTC in uncontrolled environment.

Classification Report:

 Precision recall f1 - score support

0 0.21 0.19 0.20 26

1 0.40 0.49 0.44 39

2 0.14 0.09 0.11 11

3 0.45 0.41 0.43 32

accuracy 0.35 108

macro avg 0.30 0.29 0.29 108

weighted avg 0.34 0.35 0.34 108

Table 4.19: Classification report for DTC in uncontrolled environment

DTC secures 85.75% training and 35.18% testing accuracy in uncontrolled

environment.

4.5.3.5.3 Training process for DTC in combined environment

Figure 4.43 represents the confusion matrix of DTC in combined environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 117 of 245

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.43: Confusion Matrix for DTC in combined environment

Below table 4.20 shows classification report of DTC in combined environment.

Classification Report:

 Precision recall f1 - score support

0 0.42 0.46 0.44 82

1 0.58 0.41 0.48 92

2 0.57 0.37 0.45 68

3 0.39 0.58 0.47 88

accuracy 0.46 330

macro avg 0.49 0.46 0.46 330

weighted avg 0.49 0.46 0.46 330

Table 4.20: Classification report for DTC in combined environment

DTC secures 67.75% training and 46.06% testing accuracy in combined environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 118 of 245

4.2.7 LogisticRegression

Logistic regression is used for classification. It used to guess the possibility of a

target variable. The dependent variable is binary in nature having data coded as either

1 (stands for success/yes) or 0 (stands for failure/no).

The nature of target or dependent variable is dichotomous, which means there

would be only two possible classes. Figure 4.44 represents the logistic regression

model.

4.5.3.6 Training process for LogisticRegression

Step 1: Load the data.

Step 2: Perform preprocessing steps on data. Fitting Logistic Regression to the Training

set

Step 3: Fitting Logistic Regression to the Training set

Step 4: Guessing the test result

Step 5: Test accuracy of the result / Create Confusion matrix

Step 6: Visualizing the test set result.

Figure 4.44: Logistic Regression

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 119 of 245

4.5.3.6.1 Training process for LogisticRegression in controlled environment

Figure 4.45 represents the confusion matrix of LogisticRegression in controlled

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.45: Confusion Matrix for LogisticRegression in controlled environment

Below table 4.21 shows classification report of LogisticRegression in controlled

environment.

Classification Report:

 Precision recall f1 - score support

0 0.82 0.80 0.81 56

1 0.80 0.74 0.76 53

2 0.86 0.88 0.87 57

3 0.72 0.77 0.74 56

accuracy 0.80 222

macro avg 0.80 0.80 0.80 222

weighted avg 0.80 0.80 0.80 222

Table 4.21: Classification report for LogisticRegression in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 120 of 245

LogisticRegression secures 100.00% training and 79.72% testing accuracy in

controlled environment.

4.5.3.6.2 Training process for LogisticRegression in uncontrolled

environment

Figure 4.46 represents the confusion matrix of LogisticRegression in uncontrolled

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.46: Confusion Matrix for LogisticRegression in uncontrolled environment

Below table 4.22 shows classification report of LogisticRegression in uncontrolled

environment.

Classification Report:

 Precision recall f1 - score support

0 0.61 0.42 0.50 26

1 0.62 0.82 0.70 39

2 0.00 0.00 0.00 11

3 0.60 0.66 0.63 32

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 121 of 245

accuracy 0.59 108

macro avg 0.46 0.47 0.46 108

weighted avg 0.55 0.59 0.56 108

Table 4.22: Classification report for LogisticRegression in uncontrolled environment

LogisticRegression secures 100.00% training and 59.25% testing accuracy in

uncontrolled environment.

4.5.3.6.3 Training process for LogisticRegression in combined environment

Figure 4.47 represents the confusion matrix of LogisticRegression in combined

environment.

0 Cercospora

1 Healthy

2 Powdery Mildew

3 Yellow Mosaic

Figure 4.47: Confusion Matrix for LogisticRegression in combined environment

Below table 4.23 shows classification report of LogisticRegression in combined

environment.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 122 of 245

Classification Report:

 Precision recall f1 - score support

0 0.69 0.70 0.69 82

1 0.68 0.73 0.70 92

2 0.92 0.65 0.76 68

3 0.62 0.70 0.66 88

accuracy 0.70 330

macro avg 0.73 0.69 0.70 330

weighted avg 0.71 0.70 0.70 330

Table 4.23: Classification report for LogisticRegression in combined environment

LogisticRegression secures 100.00% training and 69.69% testing accuracy in combined

environment.

4.2.8 Deep Neural Networks

Deep Neural Networks, in their simplest form, are presented as a set of hierarchical

layers of neurons with connections to other neurons. The input data is passed through

this series of hidden layers and undergoes specific calculations to map to the output

layer where the number of neurons in the output layer will be the number of categories

of diseases in our case. The connection between neurons of consecutive layers is

associated with weights. Each layer can comprise one or more neurons and each one of

them computes an activation function that mimics the signal to pass to the next neuron.

These networks are trained using a mathematical algorithm known as backpropagation

that uses the concept of partial differentiation and chain rule. Deep Neural Networks

can be implemented and trained using high-level frameworks like Keras and low-level

frameworks like Tensorflow, MXNet.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 123 of 245

4.2.9 Convolutional Neural Networks (CNN)

A Convolutional Neural Network is a kind of neural network that can effectively

classify the Spatial and Temporal dependencies in the data by passing through multiple

filters and is frequently used when dealing with images. Its architecture is designed in

such a way that it performs better because of the relatively different number of

parameters involved and the reusability of weights.

The pre-processing steps required for ConvNets are much less compared to

traditional machine learning algorithms. Each image when training goes through a

series of operations, known as convolutions, a dot product of a 2D kernel of a specified

size is slid over the image and the small region of the image the kernel is connected to.

The resultant is then followed by an activation function like ReLU (Rectified Linear

Unit) and then followed by a Pooling layer that generally reduces the image resolution

by making it half the number of pixels. After this, stacked layers of the fully connected

layer are usually added to learn non-linear combinations of the high-level features

presented by the convolutional layers. But before passing the feature maps to the fully

connected layers, there is a need to flatten the features maps. Figure 4.48 represents the

Convolutional Neural Network model.

4.5.3.7 Training process for Custom CNN

The process of CNN classification involved following steps:

Step 1: Select images to train the convolutional neural network.

Step 2: Extraction of feature filters/feature maps.

Step 3: Implementation of the convolutional layer.

Step 4: Apply the ReLu Activation function on the convolutional layer to convert all

negative values to zero.

Step 5: Then apply max pooling on convolutional layers.

Step 6: Make a fully connected layer

Step 7: Then input an image into CNN to predict the image content

Step 8: Backpropagation to calculate the error rate

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 124 of 245

Table 4.24 represents the model architecture of custom CNN.

Layer Filters Kernel Act. MP

Conv2D 32 3 x 3 ReLU

Conv2D 64 3 x 3 ReLU

Conv2D 128 3 x 3 ReLU

Conv2D 128 3 x 3 ReLU

Conv2D 256 3 x 3 ReLU

Layer Neurons Act

Flatten - - - -

Dense 256 - ReLU -

Dense 128 - ReLU -

Dense 128 - ReLU -

Figure 4.48: CNN Architecture

Input
Image

Conv_1 Max
Pooling

Conv_
2

Feature
Map

Flattened

Input
Layer Hidden

Layer
Output
Layer

Fully
Connected

ReLU
Activation

Fully Connected

C1
(CLS)

Cn
(MYM
V)

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 125 of 245

Dense 64 - ReLU -

Dense 4 - Softmax -

Table 4.24: Model architecture of custom CNN

Below Table 4.25 represents the parameter setup for CustomCNN.

Layer Operation in

Layer

Filters Kernel Act. No. of

parameters

MP

Conv2D_1 Convolution 32 3 x 3 ReLU 896 Yes

Conv2D_2 Convolution 64 3 x 3 ReLU 18496 Yes

Conv2D_3 Convolution 128 3 x 3 ReLU 73856 Yes

Conv2D_4 Convolution 128 3 x 3 ReLU 147584 Yes

Conv2D_5 256 3 x 3 ReLU 295168 Yes

Layer Neuron

s

 Act

Flatten - - - 0 -

Dense 256 - ReLU 4194560 -

Dense 128 - ReLU 32896 -

Dense 128 - ReLU 16512 -

Dense 64 - ReLU 8256 -

Dense 4 - Softm

ax

260 -

Table 4.25: Parameter setup for CustomCNN

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 126 of 245

4.5.3.7.1 Training process for CNN in controlled environment

CNN models for controlled environment with different architectures are trained to

complete objective. The comparison process is divided into 2 different rounds. A batch

size of 64, input shape (256, 256, 3) and a learning rate of 0.0003 is maintained

throughout the comparison.

In the first round, a custom CNN architecture and two pre-built models: VGG16 and

MobileNetV2 are compared with each other.

Except for the Custom CNN, the pre-trained weights for the other models are loaded

and thus its training process is Transfer Learning.

All three models are trained for 20 epochs and categorical cross-entropy as their

loss function. MobileNet V2 model performs very poorly and also overfits the dataset

with a huge difference. On the other hand, the VGG16 architecture performs the best

with a test accuracy of 95.5%. Our Custom CNN model also performs decently with a

test accuracy of 89.9% but to improve the results model was tuned by hyperparameters.

Here, Figure 4.49 represents basic comparison by the accuracy and loss graph for

Custom CNN, VGG16, and MobileNet2 before tuning.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 127 of 245

Table 4.26 represents the training and testing accuracy and loss for all the three

models.

Model Accuracy (%)

(Train/Test)

Loss

(Train/Test)

Custom CNN 96.67 / 89.19 0.1006 / 0.2553

VGG16 93.65 / 95.5 0.2182 / 0.1487

MobileNet V2 99.8 / 35.14 0.0001 / 29.7

Table 4.26: Accuracy and Loss Metrics in the first round

Figure 4.49: Accuracy and Loss graph For Custom CNN, VGG16, and MobileNet2

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 128 of 245

In the second round, researcher try to tune the hyperparameters of the custom CNN

model to yield the best results possible. The following Table 4.27 presents the

parameter grid combination, used to search for the best hyperparameters:

Batch Norm. {True, False}

Optimizer {SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax}

Learning Rate {0.01, 0.03, 0.001, 0.003, 0.0001, 0.0003 }

Dropout rate {0.0, 0.1, 0.2}

Table 4.27: Parameter grid (controlled CNN)

After performing the hyper parameter tuning using Keras-tuner, researcher found

that the best hyper parameter for Custom CNN model was:

Batch Norm. False Optimizer Adamax

Dropout rate 0.1 Learning rate 0.0003.

The CNN model has trained again but with the given hyper parameters and yields

a training accuracy of 96.84% and testing accuracy of 95.05%. Below Figure 4.50

shows the Keras Tuner Results of CNN for controlled environment.

Figure 4.50: Keras Tuner Results (controlled CNN)

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 129 of 245

Figure 4.51 presents the accuracy and loss graphs of Custom CNN after

hyperparameter tuning in controlled environment.

4.5.3.7.2 Training process for CNN in uncontrolled environment

Custom CNN models is trained to complete the objective. A batch size of 64, input

shape (256, 256, 3) is maintained throughout the comparison. Our Custom CNN model

performs decently with a test accuracy of 90.00% but can still be improved by

hyperparameter tuning.

Figure 4.51: Accuracy and Loss graph for CustomCNN after

hyperparameter tunning.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 130 of 245

Below figure 4.52 represents accuracy and loss graph of Custom CNN in

uncontrolled environment before hyperparameter tuning. After training Model achieves

a training and testing accuracy of 94.68% and 90.00% respectively.

Below Table 4.28 shows the parameter grid that applied on Custom CNN for

hyperparameter tuning in uncontrolled environment.

Batch Norm. {True, False}

Optimizer {SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax}

Learning Rate {0.01, 0.03, 0.001, 0.003, 0.0001, 0.0003 }

Dropout rate {0.0, 0.1, 0.2}

Table 4.28: Parameter Grid (CNN Uncontrolled)

Figure 4.52: Accuracy and Loss graph of CustomCNN before tuning

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 131 of 245

After applying parameter grid for Custom CNN model for uncontrolled

environment the best parameters found are as follow:

Batch Norm. False Optimizer Adam

Dropout rate 0.1 Learning rate 0.0001.

The CNN model has trained again but with the given hyper parameters and yields

a training accuracy of 99.69% and testing accuracy of 87.88%. Below Figure 4.53

shows the accuracy and loss graphs of Custom CNN after hyperparameter tuning in

uncontrolled environment.

Below Table 4.29 represents the training and testing accuracy of CustomCNN

before tuning and after tuning respectively for uncontrolled environment.

Figure 4.53: Accuracy and Loss graph for CustomCNN after hyperparameter tuning in

uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 132 of 245

Training Testing

Custom CNN 94.68% 90%

Custom CNN Tuned 99.69% 87.88%

Table 4.29: Accuracy Achieved in uncontrolled environment

4.5.3.7.3 Training process for CNN in combined environment

The model is trained for 20 epochs on a batch size of 64 and a learning rate of

0.0003. After training Model achieves a training and testing accuracy of 94.58% and

92.12% respectively. Figure 4.54 shows the accuracy and loss graph of CustomCNN in

combined environment.

Below Table 4.30 shows the parameter grid that applied on Custom CNN for

hyperparameter tuning in combined environment.

Figure 4.54: Accuracy and Loss graph of Custom CNN before tuning of combined

environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 133 of 245

Batch Norm. {True, False}

Optimizer {SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax}

Learning Rate {0.01, 0.03, 0.001, 0.003, 0.0001, 0.0003 }

Dropout rate {0.0, 0.1, 0.2}

Table 4.30: Parameter Grid (CNN - Comined)

After applying parameter grid for Custom CNN model for combined environment

the best parameters found are as follow:

Batch Norm. False Optimizer Adam

Dropout rate 0.1 Learning rate 0.0001.

The CNN model has trained again but with the given hyper parameters and yields

a training accuracy of 98.81% and testing accuracy of 90.68%. Below Figure 4.55

shows the accuracy and loss graphs of Custom CNN after hyperparameter tuning in

combined environment.

Figure 4.55: Accuracy and Loss graph for CustomCNN after hyperparameter tuning in

combined environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 134 of 245

 Below Table 4.31 represents the training and testing accuracy of CustomCNN

before tuning and after tuning respectively for uncontrolled environment.

 Training Testing

Custom CNN 94.58% 92.12%

Custom CNN Tuned 98.81% 90.68%

Table 4.31: Accuracy Achieved in combined environment

4.5.3.8 Other changes tried with SVM

 Previously batch size for SVM was 64 for all the three environments. Now new

batch size of 32 applied on SVM to see whether the change in batch size will affect the

results or not. Apart from batch size all the other parameters will remain same.

4.5.3.8.1 Changes tried with SVM in controlled environment

In controlled environment with 32 batch size 99.84% and 81.98% training and

testing accuracies achieved, and after tuning the hyperparameter 100% and 84.68%

make much difference in results. Both the old and new values are displayed in Table

4.32.

Parameter Old Value New Value

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

99.84% / 86.9%

100% / 86.4%

99.84% / 81.98%

100% / 84.68%

Best params:

Table 4.32: Changes tried with SVM in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 135 of 245

4.5.3.8.2 Changes tried with SVM in uncontrolled environment

In uncontrolled environment with 32 batch size 100.00% and 63.88% training and

testing accuracies achieved, and after tuning the hyperparameter 100.00% and 63.88%

training and testing accuracies achieved. Which shows that again change in batch size

rence in results. Both the old and new values are displayed in

Table 4.33.

Parameter Old Value New Value

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

99.76% / 63.88%

100.00% / 89.00%

100.00% / 63.88%

100.00% / 63.88%

Best params:

Table 4.33: Changes tried with SVM in uncontrolled environment

4.5.3.8.3 Changes tried with SVM in combined environment

In combined environment with 32 batch size 99.59% and 73.03% training and

testing accuracies achieved, and after tuning the hyperparameter 100.00% and 74.84%

training and testing accuracies achieved. Both the old and new values are displayed in

Table 4.34.

Parameter Old Value New Value

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

99.76% / 73.00%

99.90% / 89.00%

99.59% / 73.03%

100.00% / 74.84%

Best params:

Table 4.34: Changes tried with SVM in combined environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 136 of 245

4.5.3.9 Other changes tried with Custom CNN

Previously number of epochs was 20 for every environment for Custom CNN. Now

number of epochs 40 applied on Custom CNN to see whether the change in epoch

numbers will affect the results or not. Here first new epochs were tried with old batch

size of 62. And in next phase the new epochs were tried with new batch size of 32.

4.5.3.9.1 Changes tried with Custom CNN in controlled environment

First in controlled environment with 40 epochs and old batch size 64, training and

testing accuracies 100.00% and 94.14% achieved respectively, and after tuning with

the hyperparameter 95.16% and 90.54% training and testing accuracies achieved. Both

the old and new values are displayed in Table 4.35.

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 64

Train / Test

Train / Test [after

hyperparameter applied]

96.67% / 89.19%

99.24% / 95.05%

100.00% / 94.14%

95.16% / 90.54%

Best hyperparameters:

Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adamax, Learning Rate : 0.0003

Table 4.35: Changes tried (i) with Custom CNN in controlled environment

 Figure 4.56 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in controlled environment with new epoch numbers.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 137 of 245

Next in controlled environment with 40 epochs and 32 batch size 100.00% and

95.5% training and testing accuracies achieved, and after tuning the hyperparameter

99.09% and 94.59% training and testing accuracies achieved. Both the old and new

values are displayed in Table 4.36.

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

96.67% / 89.19%

99.24% / 95.05%

100.00% / 95.5%

99.09% / 94.59%

Best hyperparameters: Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adamax, Learning Rate : 0.0003

Figure 4.56: Accuracy and Loss graphs before and after tuning in controlled

environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 138 of 245

Table 4.36: Changes tried (ii) with Custom CNN in controlled environment

Figure 4.57 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in controlled environment with new epoch numbers and new

batch size.

4.5.3.9.2 Changes tried with Custom CNN in uncontrolled environment

First in uncontrolled environment with 40 epochs and old batch size 64, training

and testing accuracies 99.69% and 92.73% achieved respectively, and after tuning with

the hyperparameter 99.39% and 91.82% training and testing accuracies achieved. Both

the old and new values are displayed in Table 4.37.

Figure 4.57: Accuracy and Loss graphs before and after tuning in controlled

environment with new epochs and new batch size.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 139 of 245

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 64

Train / Test

Train / Test [after

hyperparameter applied]

94.68% / 90.00%

99.69% / 87.88%

99.69% / 92.73%

99.39% / 91.82%

Best hyperparameters: Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adam, Learning Rate : 0.0001

Table 4.37: Changes tried (i) with Custom CNN in uncontrolled environment

Figure 4.58 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in uncontrolled environment with new epoch numbers.

Figure 4.58: Accuracy and Loss graphs before and after tuning in uncontrolled

environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 140 of 245

Next in uncontrolled environment with 40 epochs and 32 batch size 98.57% and

91.21% training and testing accuracies achieved, and after tuning the hyperparameter

99.80% and 92.12% training and testing accuracies achieved. Both the old and new

values are displayed in Table 4.38.

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

96.67% / 89.19%

99.24% / 95.05%

100.00% / 95.5%

99.09% / 94.59%

Best hyperparameters:

Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adamax, Learning Rate : 0.0003

Table 4.38: Changes tried (ii) with Custom CNN in uncontrolled environment

 Figure 4.59 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in uncontrolled environment with new epoch numbers and new

batch size.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 141 of 245

4.5.3.9.3 Changes tried with Custom CNN in combined environment

First in combined environment with 40 epochs and old batch size 64, training and

testing accuracies 99.69% and 88.48% achieved respectively, and after tuning with the

hyperparameter 99.28% and 91.21% training and testing accuracies achieved. Both the

old and new values are displayed in Table 4.39.

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 64

Train / Test

Train / Test [after

hyperparameter applied]

94.58% / 92.12%

98.81% / 90.68%

99.69% / 88.48%

99.28% / 91.21%

Best hyperparameters: Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adam, Learning Rate : 0.0001

Table 4.39: Changes tried (i) with Custom CNN in combined environment

Figure 4.59: Accuracy and Loss graphs before and after tuning in uncontrolled

environment with new epochs and new batch size.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 142 of 245

Figure 4.60 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in combined environment with new epoch numbers.

Next in combined environment with 40 epochs and 32 batch size 99.9% and

90.61% training and testing accuracies achieved, and after tuning the hyperparameter

99.69% and 90.61% training and testing accuracies achieved. Both the old and new

values are displayed in Table 4.40.

Parameter Old Value New Value

Epochs 20 40

Batch Size 64 32

Train / Test

Train / Test [after

hyperparameter applied]

94.58% / 92.12%

98.81% / 90.68%

99.9% / 90.61%

99.69% / 90.61%

Best hyperparameters: Batch Normalization : 0, Dropout Rate : 0.1

Optimizer : Adam, Learning Rate : 0.0001

Table 4.40: Changes tried (ii) with Custom CNN in combined environment

Figure 4.60: Accuracy and Loss graphs before and after tuning in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 143 of 245

Figure 4.61 shows Accuracy and Loss graph of Custom CNN before and after

hyperparameter tuning in combined environment with new epoch numbers and new

batch size.

increase the accuracy. In some cases it

decreases the performance. Also change in epoch numbers (double) for Custom CNN

increases the accuracy little bit, but change in batch size has no effects on the results.

Figure 4.61: Accuracy and Loss graphs before and after tuning in combined

environment with new epochs and new batch size.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 144 of 245

4.6 Visualization of Mung Leaf Network Feature Map

Feature Visualization interprets the inner features existing in an image into visually

observable or identifiable image patterns. Feature visualization will help us to

comprehend the knowledgeable features clearly.

First, one can visualize the various feature detectors or filters that are applied to the

input image and, in the next step, visualize the feature maps that are created.

Visualizing Feature Detectors or Filters in a CNN

To convolve the feature maps from the preceding layer, CNN uses learned filters.

Filters are nothing but two-dimensional weights. These weights have a spatial

relationship with each other.

Visualizing Feature maps generated in a CNN

Filters or Feature detectors are applied to the input image or the feature map output

of the previous layers to generate feature map. Feature map visualization will deliver

perception into the inner representations for particular input for each of the

Convolutional layers in the model.

Steps involved in visualization of feature map are as follows:

Step 1: Define a visualization model; the model used for training

Step 2: Take an image as input for which we want to view the Feature map.

Step 3: Convert the image to NumPy array

Step 4: Normalize the array by rescaling it

Step 5: Run the input image through the visualization model to get all intermediary

representations for the input image.

Step 6: Create the plot for all of the convolutional layers and the max pool layers but

not for the fully connected layer.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 145 of 245

Retrieve the layer name for each of the layers in the model for plotting the Feature

maps.

Below Figure 4.62 represents the steps of Mung leaf network feature map

visualization generated in Custom CNN. Figure represents original leaf image from

controlled environment and image after it is passed through First, Second and Third

convolution layer, and finally represents Features of 3 convolutions above after an

activation unit ReLU.

Same visualization steps are also applied for the uncontrolled environment data

too. Below Figure 4.63 represents the visualization of mung leaf network feature map

in uncontrolled environment.

Figure 4.62: Visualization of mung leaf network feature map in controlled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 146 of 245

4.7 Scope of Experimental work for Mung Leaf disease detection

For experimental task of recognition of Mung Leaf disease detection researcher

has selected three diseases Cercospora Leaf Spot, Powdery Mildew, and Yellow Mosaic

Virus and a healthy leaf. 7 different classifiers were tried on all the three dataset

environments controlled, uncontrolled and combined.

Environment

Feature Map

Figure 4.63: Visualization of mung leaf network feature map in uncontrolled environment

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 147 of 245

4.8 Performance evaluation measurement

The confusion matrix is one of the best instinctive and beneficial metrics for

assessing the performance of a classifier that provides the idea of how ample a classifier

can be correctly recognized samples of different classes. The confusion matrix is

presented in table 4.41 present the two-class problem. The True Positive specifies that

the tasted sample data is actually from positive class and likewise predicates as positive,

whereas False Positive indications that the data is coming from the positive class, but

it is evaluated as negative. Similar way False Negative specifies data comes from

negative class but classified as positive and the True Negative specifies the sample is

from negative class and also classified as negative.

 Predicted Values

 Positive Negative Total

A
ct

ua
l V

al
ue

s Positive TP FN
P = (TP + FN) = Actual Total

Positives

Negative FP TN
N = (FP + TN) = Actual Total

Negatives

 Total

Predicted

Total

Positives

Predicted

Total

Negatives

Table 4.41: Confusion Matrix for Two Class Problem

It is very challenging to imaging the complete confusion matrix when numbers of

classes are increasing, however the information provided by the confusion matrix have

been used for an additional performance parameter that well characterizes the

performance of the classifier model. These parameters are namely accuracy, precision,

recall, and F1 score.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 148 of 245

4.8.1 Accuracy

these parameters works well. For example, for one class X, the number of samples are

90% and another class Y has only 10%, for this, the training accuracy is very decent,

but at the testing time, if class X has 70% and Y has 30% than accuracy is dropping

severely. The formula for Accuracy measurement is shown by equation 4.1.

Accuracy =
 (TP + TN)

 (TP + FP + FN + TN)

Where; TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

4.8.2 Precision

Precision is well-

4.2.

Precision =
 (TP + TN)

 (TP + FP)

4.8.3 Recall

Recall is

Recall =
 (TP)

 (TP + FP)

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 149 of 245

4.8.4 F1-score

F1 score is defined as

states how ample classifier is accurate and strong. The highest value of the F1 score

indicates enhanced performance of the model. It is stated mathematically by equation

4.4.

F1 Score =
 2 * (Precision * Recall)

 (Precision + Recall)

4.9 CHAPTER SUMMARY

This chapter presented the methodology used during the design of the proposed

machine learning and deep learning classifiers for leaf image classification. Seven

classifiers, namely, SVM, KNN, AdaBoost, GaussianNB, DTC, LogisticRegression

and Custom CNN were used for this purpose. The influence of the numerous features

on recognition along with the performance of the classifiers was analyzed using the

mung leaf dataset divided into three different environments, namely, controlled,

uncontrolled and combined (controlled + uncontrolled), with numerous performance

metrics were studied. The results of such studies are presented and discussed in the next

chapter, Results and Discussion.

Design and development of a model to classify crop foliar diseases

Atmiya University, Rajkot, Gujarat, India Page 150 of 245

Reference:

[1] new approach for off-line

handwritten Arabic word recognition using KNN

international conference on signal and image processing applications (ICSIPA),

pp 191 194, 2009.

[2] r recognition using

KNN

Electromechanical Engineering Conference (IEMECON), pp. 110-114, 2017.

