
 ATMIYA UNIVERSITY
 RAJKOT

 A

 Report On

 2D ADVENTURE GAME

 Under subject of

 MAJOR PROJECT
 B. Tech. Semester– VII

 (Computer Engineering)

 Submitted By:

 Siddhesh Puranik 190002090

 Prof. Nirali Borad
 (Faculty Guide)

 Prof. Tosal M. Bhalodia
 (Head of the Department)

 AcademicYear

 (2022-23)

 CANDIDATE’S DECLARATION

 I hereby declare that the work presented in this project entitled “ 2D Adventure

 Game” submitted towards completion of the project in 7 th Semester of B.Tech.

 (Computer Engineering) is an authentic record of my original work carried out

 under the guidance of “ Prof. Nirali Borad ”.

 I have not submitted the matter embodied in this project for the award of any other

 degree.

 Semester: 7 th

 Place: Rajkot

 Signature:

 Siddhesh Puranik (190002090)

 ATMIYA UNIVERSITY

 RAJKOT

 CERTIFICATE

 Date:

 This is to certify that the “ 2D Adventure Game ” has been carried out by

 Siddhesh Puranik under my guidance in fulfillment of the subject Project in

 COMPUTER ENGINEERING (7 th Semester) of Atmiya University, Rajkot, during

 the academic year 2022-23.

 Prof. Nirali Borad Prof. Tosal M. Bhalodia

 (Project Guide) (Head of the Department)

 ACKNOWLEDGEMENT

 I have put a lot of effort into this project. However, it would not have been

 possible without the kind support and help of many individuals and organizations.

 I would like to extend our sincere thanks to all of them.

 I am highly indebted to Prof. Nirali Borad for their guidance and constant

 supervision as well as for providing necessary information regarding the Major

 Project titled, “ 2D ADVENTURE GAME ”. I would like to express my gratitude

 towards staff members of the Computer Engineering Department, Atmiya

 University, for their kind cooperation and encouragement which helped me in

 completion of this project.

 I even thank and appreciate my colleagues in developing the project and people

 who have willingly helped me out with their abilities.

 Siddhesh Puranik (190002090)

 4

 ABSTRACT

 Little Town is an adventure game in which players control a child

 in an idyllic small town. By following clues, players must find

 the right items and bring them to one of the town’s three

 characters - the Baker, Teacher and Grocer.

 This game contains:

 ● 4-Directional Player Movement
 ● State-Based Animation
 ● Items you can pick and carry
 ● Interactable NPCs
 ● Do missions for NPCs
 ● Finish game by completing all NPC

 missions
 ● Sequence animations

 5

 INDEX

 Sr. No. Title Page No.
 Candidate’s Declaration 2

 Certificate 3

 Acknowledgement 4

 Abstract 5

 Index 6

 1 Introduction

 1.1 Introduction 8

 1.2 Purpose 8

 1.3 Scope 8

 2 Hardware & Software Requirements

 2.1 Minimum Hardware Requirements 10

 2.2 Minimum Software Requirements 10

 3 Steps

 3.1 Starting New Project in GameMaker 11

 3.2 Creating Objects 12

 3.3 Creating Sprites 13

 3.4 Creating Rooms 15

 3.5 Background 17

 3.6 Events 17

 4 GML 19

 5 Events 20

 5.1 Keyboard Events to Move Player 20

 6

 5.2 Step Events 21

 5.3 Vertical Movement 23

 5.4 Changing all movement Events to code 25

 5.5 Changing Player Sprites 26

 6 Game’s Town

 6.1 Preparing Tile Sets 30

 6.2 Designing The Town 32

 6.3 Placing Tiles 33

 6.4 Adding Objects To The Town 35

 7 NPCs

 7.1 The Baker NPC 42

 7.2 The Teacher NPC 43

 7.3 The Grocer NPC 45

 8 Creating The Title Screen 47

 Conclusion 59

 7

 1. Introduction

 1.1 Introduction

 Little Town is an adventure game in which players control a child in an idyllic small

 town. By following clues, players must find the right items and bring them to one of

 the town’s three characters - the Baker, Teacher and Grocer.

 This game contains:

 ● 4-Directional Player Movement
 ● State-Based Animation
 ● Items you can pick and carry
 ● Interactable NPCs
 ● Do missions for NPCs
 ● Finish game by completing all NPC missions
 ● Sequence animations

 1.2 Purpose

 Adventure games have been around since the dawn of gaming.
 Though the genre has evolved, moving from text to
 fully-fledged 3D experiences, it's unlikely to go away
 permanently.
 People crave a good narrative; you can't beat a well-told story.
 And if there's one thing that adventure games do best, it's suck
 you into their fictional worlds and let your imagination soar.

 8

 1.3 Scope

 ● General features:
 ○ GameMaker Studio 2’s Integrated Development Environment (IDE)

 and user interface (UI)
 ○ Creating and editing Objects, Sprites and Sounds
 ○ Coding player movement
 ○ Using Alarms to time actions
 ○ Using Draw and Draw GUI for animating and displaying graphics
 ○ Creating and editing Rooms
 ○ Designing levels with Tiles, Sprites and Objects
 ○ Creating and editing Cameras and Viewports
 ○ Playing sound effects and music
 ○ Creating 3D audio with Emitters and Listeners
 ○ Tracking collision between Objects

 ● Coding (GML) specifics:
 ○ Variables, global variables and booleans
 ○ Simple arrays for storing data
 ○ For loops, switch statements and with statements
 ○ Functions and Script Assets
 ○ States and enums

 ● Sequences:
 ○ UI and functionality overview
 ○ Creative use of the timeline
 ○ Using Broadcast Messages to communicate with other assets in the

 game
 ○ Using a control Object to listen to and affect Sequences

 9

 2. Hardware & Software Requirements

 2.1 Minimum Hardware Requirements

 Table 2.1.1 Hardware Requirements

 Number Description

 1 Dual Core CPU

 2 2 GB RAM

 3
 OpenGL 4-compliant onboard graphics or Dedicated

 GPU

 2.2 Minimum Software Requirements

 Table 2.2.1 Software Requirements

 Number Description Type

 1 Operating System
 Windows 7 with SP1 or

 macOS Mojave

 2 Language GML

 3 IDE GameMaker Studio

 10

 3. Steps

 3.1 Starting New Project in Gamemaker

 The GameMaker Studio 2 Integrated Development Environment (IDE). The blank

 area is the Workspace and the list on the right is the Asset Browser.

 You may see by default that your Asset Browser has several folder icons with

 labels. These folders are called Groups, and they exist to help you organize

 commonly used assets (Sprites, Sounds, Objects, etc.). You can also add new

 groups as you need them or remove ones you don’t.

 11

 3.2 Creating Objects

 Objects are the heart of GameMaker Studio 2. They can be players, enemies, items,

 obstacles, but they can also be health bars, textboxes, title screens and even

 invisible stuff that keeps track of our game behind the scenes. In short, if something

 must do something, it’s probably going to be an Object.

 12

 3.3 Creating Sprites

 Sprite in the Sprite Editor

 13

 In the Sprite Editor, click the Edit Image button. You’ll be taken to a large version

 of your Sprite with several drawing and selection tools. Note that doing this has

 opened a new tab at the top of the IDE. You can click the X on this tab to close this

 at any time, or you can click on the “Workspace” tab to return to where we were. In

 the menu bar at the top of the IDE, click Image > Convert to Frames. This new

 window will allow us to “slice” our Sprite into individual frames. To do so, change

 the values like so:

 14

 3.4 Creating Rooms

 Now that we have a player object we can see, let’s put it in a Room! Luckily, we

 already have one to use because GameMaker Studio 2 always creates one Room for

 us by default. In the Asset Browser, open the folder called Rooms and double-click

 Room1. It will open our first Room, which is, pretty boring.

 A Room in GameMaker Studio 2 is like a level or scene in your game. But it’s

 more than that; a Room can be a title screen, a loading screen, a credits screen, or

 almost anything else. But like the name implies, it’s a place where stuff happens.

 Right now, though, nothing of interest is happening. So, let’s change a few things.

 On the left is your Room Editor, which has all sorts of important things.

 From top to bottom you’ll see:

 ● Room Layers: this is where we’ll place Objects, background images and

 more

 ● Layer Properties: this lets you change all sorts of stuff for a particular layer

 ● Room Settings: here we can change the Room size and edit Cameras, which

 we’ll do later

 15

 For now, click on the Background layer and look at its Properties in the section on

 the lower left. (If things look squished or out of the way, you can adjust the size of

 the different sections here.) Click on that black void beside Colour and pick any

 colour you like.

 Now, click on the Instances layer in the Layers section. Then look at your Asset

 Browser (it should still be on the right of the IDE). Find our obj_player Object and

 drag it onto the room to place it.

 16

 3.5 Background

 3.6 Events

 17

 The Create Event happens when an Object is “created” within the game — in other

 words, when it first appears. Think of a space shooter where mashing a button

 shoots little bullets; each of those bullets is an Object and as soon as they appear,

 they each run their Create Event.

 Since we’ve placed an instance of obj_player into our first Room, this Create Event

 will happen as soon as that Object appears in the Room — which is to say, as soon

 as we see the Room in our game.

 At the top of each Event is a line marked /// @description.

 You can add something after this, like “Code for this Event” to make titles. These

 titles appear on the left in the Events list for that Object and can help you stay

 organized.

 18

 4. GML

 GameMaker Language Code

 GameMaker Studio 2 uses its own programming language called GameMaker
 Language, or GML.

 Enter our first code in obj_player’s new Create Event, underneath the @description
 line:

 // Variables

 walkSpeed = 16;
 vx = 0;
 vy = 0;
 dir = 3;
 moveRight = 0;
 moveLeft = 0;
 moveUp = 0;
 moveDown = 0;

 These are all variables. A variable is a way to store information, called a value.
 GameMaker Studio 2 has built-in variables (i.e., things that always exist), but we
 can also make our own, like magic.

 Here, we’re creating several variables and assigning values to them for later use.

 A line that starts with 2 or more forward slashes (such as // This is a comment) is
 “commented out,” meaning it is not code that will run.

 19

 5. Events

 5.1 Keyboard Events to Move Player

 The first thing we want to do is be able to move our player Object around by using
 the keyboard, so let’s add another Event.

 With obj_player open in the Object Editor, click Add Event and choose Key Down
 > Right.

 EVENT WHAT IT MEANS

 Key Down Occurs if that key is being held down

 Key Pressed Occurs only when that key is first pressed down

 Key Up Occurs when that key is released

 In the new Key Down – Right Event, write the following code:

 moveRight = 1;

 As you can see, we’re changing the value of the variable moveRight to 1.

 In the Object Editor, click “Add Event” again and choose Key Up > Right.

 In this new Key Up – Right Event, add this line of code:

 moveRight = 0;

 So here we’re resetting moveRight back to 0 when we release the right arrow key.

 20

 5.2 Step Events

 In the Object Editor, click Add Event and choose Step > Step. Note that there are
 multiple Step Events, but we want the one just called Step.

 The Step Event happens every single frame of the game, so we must use it wisely. If
 our game is 60 FPS, then our player Object is going to run whatever code is in here
 60 times every second.

 In this new Event, add the following code:

 // Calculate movement
 vx = (moveRight * walkSpeed);
 // If Idle if (vx == 0) {

 // do nothing for now }
 21

 // If moving
 if (vx != 0) {

 x += vx; }

 Code Working

 // Calculate movement
 vx = (moveRight * walkSpeed);

 We’re calculating the value of vx based on
 two other values: moveRight and walkSpeed:
 - We set moveRight to 1 when we’re holding
 down the right arrow key (in the Key Down –
 Right Event)
 - We reset moveRight to 0 when we release
 the right arrow key (in the Key Up – Right
 Event)
 - In obj_player’s Create Event, we set
 walkSpeed to 16
 Therefore, vx can be either 16 (1 x 16) or 0 (0
 x 16)

 // If Idle
 if (vx == 0) {
 // do nothing for now
 }

 If vx is equal to 0, do something. (Right now,
 we’re not doing anything in particular, so we
 just have a comment here)

 // If moving
 if (vx != 0) {
 x += vx;
 }

 If vx is not equal to 0, then add the value of vx
 to obj_player’s x position.

 (In GML, += means “add to”. Not
 unexpectedly, -= means “subtract from.”)

 When your game window opens, press the right arrow key; the player should move
 to the right.

 Release the right arrow key, and the player should stop moving.

 22

 5.3 Vertical Movement

 Now that we have these principles in place, we can make our player Object move
 up and down too.

 With obj_player open, use the Add Event button to add the following Events, and
 enter the code shown here for each.

 23

 When you have these Events in place, open the Step event again, and edit the three
 code blocks we’ve written there like so:

 You can see we’ve added vertical movement to our player with these additions.
 We’ve also added checks for vy in the second and third blocks.

 You should be able to move the player Object around in all four directions!

 24

 5.4 Changing all movement Events to code

 open obj_player and its Step event. Enter the following new code above the //
 Calculate movement code block:

 Now, in the Object Editor, we’re going to delete all eight of those Key Events,
 because we don’t need them anymore.

 You can right-click on each Key Down and Key Up event and choose Delete Event.

 You can also shift-click a group of Events all at once and use the same right-click
 menu to delete them all in one go.

 You’ll receive a warning when you do this.Once you’ve deleted these Events, run
 your game again and try the arrow keys on the keyboard.

 Our player Object should be moving just like before! When you’re ready, close
 your running game and return to GameMaker Studio 2.

 The function keyboard_check() requires a single argument — a detail it needs to do
 its job; in this case, the key we want our game to check.

 Here, we’re checking the right arrow key (called vk_right in GML). And, as it turns
 out, the keyboard_check() function does the exact same thing as the Key Down
 Events we used at first! So, keyboard_check(vk_right) is the same as creating a Key
 Down – Right Event.

 25

 5.5 Changing Player Sprites

 Change the player Object’s Sprite based on whether it’s idle (standing still) or
 walking. Do so based on its direction (up, down, left, right).

 26

 First, let’s get all our other assets ready. Using File Explorer (Windows) or Finder
 (Mac), navigate to the Assets folder provided with this course. Open the Sprites >
 Characters and Items folder and drag these Sprites into the Sprite group in
 GameMaker Studio 2’s Asset Browser:

 Once each new Sprite Strip has correctly been converted into a Sprite with frames,
 you can remove its _stripXX suffix.

 Make sure the origin point for each of these new Sprites is the same as what you
 else things will get weird. You can see that first Sprite (spr_player_idle_down)’s
 origin x and y values by double-clicking the Sprite in the Asset Browser; in the
 top-right of the Sprite Editor window are two Origin fields.

 Here, we’ve converted one of the new player Sprites into frames; set its FPS to 10
 to match the original sprite; changed its Origin to match as well; and organized
 these new player Sprite assets within the Asset Browser.
 Once you have all the new Sprites dealt with, open obj_player and its Step Event
 again.
 Update the // If moving code block like so:

 27

 Since we’re already using vx and vy for movement, we can check it here with a
 bunch of if statements. It’s not the most efficient way to do this, but it totally works.

 We also set dir to a different value in each case so we can use it in the next bit.

 28

 You should see your player moving in all four directions, with the correct Sprites
 for each direction.

 Back in obj_player’s Step Event, replace the “If idle” block with new code:

 This new code is called a switch function. It’s a handy way to combine a bunch of if
 statements into something easier to read.

 Here, we’re checking the dir variable (which we set whenever we’re moving) and
 applying the correct idle Sprite for the last direction that obj_player was moving.

 Run the game again and see the difference; now our player correctly moves and
 stops!

 29

 6. Game’s Town

 6.1 Preparing Tile Sets

 Using File Explorer (Windows) or Finder (Mac), navigate to the Assets folder
 provided with this course. Go to Sprites > Backgrounds and drag the files there into
 the Asset Browser. As mentioned before, you can organize these assets if you want
 to (for example, by putting them in a Town Background group within the Sprites
 group.).

 You’ll see a bunch of Sprites for things like trees and bushes and a big image called
 spr_townTiles. Open this image from the Asset Browser.

 Most games build levels and areas with reusable assets that designers can place and
 nudge to create a scene. In GameMaker Studio 2, we can use Tiles to do this. They
 are just as the name suggests; tiled graphics that we can use over and over. This file
 (spr_townTiles), is going to let us design a town by creating a Tile Set.

 Tile Sets need two pieces: a Tile Set asset and a Sprite attached to that asset.

 30

 We already have the Sprite (spr_townTiles) so we just need to create the asset.

 In the Asset Browser, you’ll see a pre-existing group called Tile Sets. You can
 right-click on this and choose Create > Tile Set.

 In the Tile Set editor that pops up, name this tiles_town.

 Click the Select Sprite menu to choose the Sprite you just imported
 (spr_townTiles). You’ll see your Tile Set now has a grid and probably doesn’t make
 much sense.

 That grid is the tile grid and as you can see, it’s way too small. So, on the right side
 of the Tile Set editor, change both the Tile Width and Tile Height to 400.

 Now the grid should look correct and you’ll see a blank space in the top-left.

 Our Tile Set with Sprite attached and Tile Width and Height set.

 31

 6.2 Designing The Town

 Open our one-and-only Room (rm_gameMain) and make sure you can see the
 Room Editor (the tab that shows us layers like Instances and Background. At the
 bottom of this tab are those layer buttons we mentioned; click on the Create New
 Tile Layer () button.

 This will make a new layer called Tiles_1. Right-click on the new layer and choose
 Rename; rename it to TilesMain.

 Drag the layer to place it between Instances and Background.

 Select TilesMain in the Layers section so we can edit it. Below, under Layer
 Properties, you’ll see a menu that says, “No Tile Set.” Click on this and choose the
 TilesTown Tile Set we just made.

 You’ll see a new tab open called Room Editor and it will show our new Tile Set. If
 it looks huge or you can’t see it properly, you can use the little magnifying glass
 tools to zoom in and out.

 32

 You might have noticed that our little Room is way too small to do much with, so
 let’s change that. In the Properties tab (by default on the lower left of the IDE),
 you’ll see a few sub-sections you can show and hide.

 The first is Room Settings; if it’s hidden, click the little arrow to show its contents
 and change these values:

 Width: 4000
 Height: 2400

 Now we’ve got some space to play in! In the main Room view, you can use the
 magnifying glass tools at the top to zoom in and out and you can hold the space bar
 while clicking and dragging with your mouse to pan around. Make sure you can see
 the whole Room.

 6.3 Placing Tiles

 You’ll notice a grid in the Room that corresponds to the size of our Tile Set’s Tile
 Width and Tile Height (in this case, 400). If you click on the Grid icon at the top
 right on of the Room tab, you can turn the grid on and off and check the grid size.

 For now, start placing Tiles in your Room! You can “stamp” them one by one by
 clicking on a tile in the Room Editor tab, or you can click and drag on the Tile Set
 to select and stamp a series of Tiles all at once.

 Design the base for your town anyway you like. Fill up every tile space in the
 Room.

 33

 34

 6.4 Adding Objects To The Town

 With our town partially laid out, let’s create an Object using some of the other
 assets we imported.

 Close the game window and return to GameMaker Studio 2.

 Go back to your Workspace and in the Asset Browser, find the group of town
 background Sprites we imported. Double-click on spr_barrel01 to open it in the
 Sprite Editor.

 You can actually place just plain old Sprites on a layer in a Room but doing so
 means our player Object won’t be able to interact with them.

 So, we’re going to make each of these environmental details into Objects.

 First, let’s take that origin point on our barrel Sprite and move it to the bottom
 center of the Sprite, so it lines up with the middle of the base of the barrel.

 Now, in the Asset Browser, right-click and choose Create > Object. Name this new
 Object obj_barrel01. Click on the menu that says, “No Sprite,” and choose
 spr_barrel01.

 This is all good for now. Open our big room (rm_gameMain) again and click on the
 Instances layer to make sure it’s selected.

 In the Asset Browser, find our new obj_barrel01 and drag it into the Room. (If you
 can’t see your Asset Browser, look for the Assets tab; it might be paired with
 something else, or the Room Editor tab might still be in focus..)

 Dragging an Object into a Room creates an instance of that Object, so you can place
 as many as you like. If you update an Object, all its instances are automatically
 updated too.

 Go ahead and drag one or two more barrels into the Room and position them
 wherever you like

 35

 When you’re happy with your barrel placement, run the game again and walk
 around.You should have observed that the barrels appear “flat” — we don’t seem to
 move in front or behind them correctly and 2e can just walk through the barrels

 36

 37

 38

 39

 40

 41

 7. NPCs

 7.1 The Baker NPC

 With our town designed, we can now turn our attention toward the other characters
 who will populate it.

 These characters are known as NPCs — non-playable characters — and our game
 will have three of them: the Baker, Teacher and Grocer.

 Let’s start with the Baker. In the Asset Browser, create a new Group and name it
 NPCs. Drag this new Group into the Sprites group.

 Next, using File Explorer (Windows) or Finder (Mac), navigate to the Assets folder
 provided with this course and open the Sprites > Characters and Items folder.

 Drag the following Sprite into the new NPCs Group you made in the Asset
 Browser:

 42

 7.2 The Teacher NPC

 43

 Right-click in the Asset Browser and create a new Object. Name it obj_npc_teacher
 and attach the spr_teacher_idle_down Sprite to it. In the Object Editor, click Parent
 and choose obj_par_npc to make the Teacher a child Object.

 For our Teacher Object, let’s do two things:
 1. Edit its idle Sprite the same way we did with the Baker.
 2. Change the values of its Variable Definitions.

 First, open spr_teacher_idle_down again and edit the animation as we did with the
 Baker. Right now, the Sprite is just two frames of animation. Play around here
 however you like to add a different cadence to the Teacher’s animation, and make
 sure to stretch the final frame out so there’s a pause.

 Next, open obj_npc_teacher and click Variable Definitions. Change the values for
 loopRange01 and loopRange02 to something other than the defaults.

 44

 7.3 The Grocer NPC

 Create another Object and name it obj_npc_grocer. Attach the
 spr_grocer_idle_down Sprite to it. Just like above, make the Grocer Object a child
 of obj_par_npc.

 In the Object Editor, click Variable Definitions and change the defaults here to be
 different values (they don’t have to be the same as the values you chose for the
 Teacher Object).

 Next, open spr_grocer_idle_down again and repeat the steps we took above for the
 Teacher Sprite to enhance the Grocer’s idle animation; again, make sure the last
 frame of animation has a pause.

 45

 Once you have both the Teacher and Grocer ready, Go to rm_gameMain again.
 Make sure you have the Instances layer selected and drag a single Instance each of
 obj_npc_teacher and obj_npc_grocer into the Room. Position the two NPCs in front
 of the two unoccupied stores; now our town is populated!

 46

 8. Creating The Title Screen

 Using File Explorer (Windows) or Finder (Mac), navigate to the Assets folder
 provided with this course. Go to Sprites > User Interface and drag the files there
 into the Asset Browser:

 Open both spr_title_mainLogo and spr_title_pressEnter Sprites. Set the Origin for
 both to Middle Centre.

 Next, we need to create a new Room to use as a title screen.

 In the Asset Browser, right-click on the Rooms group and choose Create > Room.
 Name this new Room rm_mainTitle.

 47

 Open rm_mainTitle if it’s not open already; using the Room Editor panel, change
 the following properties:

 Next, in the Background Layer Properties section, is a drop-down menu that
 currently says “No Sprite.”

 Click this and choose the spr_bg_mainTitle Sprite we just imported. You’ll notice
 that it’s a square image, just sitting in the top-left corner of the room.

 What we want to do is tile the image.

 48

 So, in the Background Layer Properties section, do the following:

 We should test our new Room to see what we’ve done so far in action. However, if
 we run the game again now, we won’t see it.

 That’s because of our game’s current Room Order. You might ask: if our game has
 multiple Rooms, how does GameMaker Studio 2 know which one to load first?

 Look in the Asset Browser; you’ll see a special section called Quick Access. Open
 it, and you’ll see another sub-section called Room Order.

 49

 In this Room Order list, you’ll see every Room in your game. (We currently only
 have two.)

 You’ll notice that rm_gameMain has a little home icon next to it; this indicates that
 rm_gameMain will be the first Room shown to the player when our game is loaded.

 To change this, drag rm_titleScreen above rm_gameMain. If rm_titleScreen has the
 home icon beside it, you know it will be the “first” Room in the game.

 50

 With this done, run the game again to test it. You should see our new title screen
 Room, and the tiled background image scrolling diagonally.

 To change the direction and speed of the moving background, change the
 Horizontal Speed and Vertical Speed settings in the Room Editor for the title screen
 Room.

 Now that we have our title screen Room set up, we need to populate it with two
 things: a logo and a prompt for the player to begin playing the game.

 Open rm_titleScreen again. In the Layers section of the Room Editor, create a new
 Asset Layer.

 Rename this layer Logo.

 With this new layer selected, drag the spr_title_mainLogo Sprite from the Asset
 Browser into the Room. Position it however you like.

 51

 Next, we are going to create an animated prompt to encourage players to press a
 key in order to start the game. And thankfully, have the perfect tool for doing this:
 Sequences!

 Right-click on the Sequences group in the Asset Browser and choose Create >
 Sequence.

 Rename this new Sequence seq_mainTitle.

 This Sequence doesn’t need to have a large Canvas like our previous ones, so let’s
 do some setup.

 In the Sequence Editor, make the following changes:

 52

 Next, drag the spr_title_pressEnter Sprite from the Asset Browser onto the Canvas
 (position it in the centre).

 In the Dope Sheet, make sure the asset key for the spr_title_pressEnter track spans
 the entire Sequence.

 53

 Next, we want to create a simple fade effect

 Move the yellow playhead a little ways into the Sequence (say, around frame 5 or
 so).

 Select the asset key and click the “Add parameter track” button in the Track Panel.
 Choose to add a Colour Multiply parameter track.

 Next, record a keyframe at this position.

 Select the new keyframe and click the colour swatch in the Colour Multiply
 parameter track (if you don’t see this detail, click the arrow to the left of
 spr_title_pressEnter in the Track Panel to reveal it).

 In the Colour Picker that pops up, set the Alpha channel to 0. Click “OK” when
 you’re done. We’ve made the “Press Enter to Play” asset transparent.

 Next, move the playhead to near the end of the timeline, but not to the last frame.
 We suggest around frame 30.

 Repeat the process at this new position:

 If you scrub through the Sequence, or press the Play button to play it, you should
 see the text asset now fade from transparent to opaque.

 Now that we have a simple linear fade effect in place, we can do something new
 with it.

 What we actually want is for this asset to fade in and out repeatedly, for as long as
 the player remains on the title screen of our game.

 Once you’re happy with the layout of the title screen, run your game to test it. You
 should see the “Press Enter to Play” prompt fading in and out, while the tiled
 background scrolls indefinitely.

 54

 Our new title screen is looking lovely, but we still need to add functionality to it.

 Rather than make new Objects, we’re going to use one we already have:
 obj_control

 Open rm_gameMain and select the Instances layer.

 In the Instances Layer Properties section, you’ll find a long list of every single
 instance that’s been placed on that layer.

 If you scroll through the list, you’ll find the instance of obj_control that we placed
 before.

 Select this instance in the list, and press Delete to remove it from the Room.

 You can also just select the instance of obj_control within the Room itself and
 delete it.

 55

 Open rm_titleScreen again and select the Instances layer.

 Drag obj_control from the Asset Browser into the room and place it wherever you
 like.

 Next, open obj_control from the Asset Browser.

 In the Object Editor, there are options such as Visible, Solid, etc. One of these
 options is Persistent.

 Normally, an Object only exists within the Room it was created (or placed). If you
 change Rooms, any Object in the previous Room ceases to exist, as far as your
 game is concerned.

 However, a persistent Object remains in the game once it is created (or once the
 game loads a Room that contains it). A persistent Object travels between Rooms
 automatically.

 Since we’ve moved obj_control from rm_gameMain to rm_mainTitle, we need to
 make it persistent so that it will carry over to the main gameplay and continue to do
 all the things we’ve written for it to do.

 So, check Persistent in the Object Editor.

 56

 57

 Run your game again to test it again. On the title screen, you should hear your
 music looping, and the “Press Enter to Play” asset will be gently blinking in and
 out.

 Press the Enter key — you should transition immediately to the gameplay room,
 where you can begin the game as before.

 58

 Conclusion

 You can change what each of the three NPCs says for their
 myText Variable Definition to give clearer or more difficult

 hints as to which item they want.
 You can also hide the six items in more devious locations,

 or design your town to make them harder to spot.
 Currently our Little Town has six items in it.

 You’ll notice that the items can seem relevant to more than
 one character.

 59

