
ATMIYA UNIVERSITY

RAJKOT

A

Report On

STRANGE THINGS OF

DIGITAL ERA

Under subject of

PROJECT

B. TECH, Semester– VII

(Computer Engineering)

Submitted by:

1. PRINCE CHOVATIYA 190002017

2. YAGNIK SAKHIYA 190002098

3. HILKUMAR VADODARIYA 190002113

Prof. Nirali Borad

(Faculty Guide)

Prof. Tosal M. Bhalodia

(Head of the Department)

Academic Year

(2022-23)

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this project entitled “STRANGE

THINGS OF DIGITAL ERA” submitted towards completion of project in 7th

Semester of B.Tech. (Computer Engineering) is an authentic record of our original

work carried out under the guidance of “Prof. Nirali Borad”.

We have not submitted the matter embodied in this project for the award of any

other degree.

Semester: 7th

Place: Rajkot

Signature:

PRINCE CHOVATIYA (190002017)

YAGNIK SAKHIYA (190002098)

HILKUMAR VADODARIYA (190002113)

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

This is to certify that the “STRANGE THINGS OF DIGITAL ERA” has been

carried out by PRINCE CHOVATIYA under my guidance in fulfillment of the

subject Project in COMPUTER ENGINEERING (7thSemester) of Atmiya

University, Rajkot during the academic year 2022.

Prof. Nirali Borad Prof. Tosal M. Bhalodia

(Project Guide) (Head of the Department)

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

This is to certify that the “STRANGE THINGS OF DIGITAL ERA” has been

carried out by YAGNIK SAKHIYA under my guidance in fulfillment of the

subject Project in COMPUTER ENGINEERING (7th Semester) of Atmiya

University, Rajkot during the academic year 2022.

Prof. Nirali Borad Prof. Tosal M. Bhalodia

(Project Guide) (Head of the Department)

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

This is to certify that the “STRENGE THINGS OF DIGITAL ERA” has been

carried out by HILKUMAR VADODARIYA under my guidance in fulfillment of

the subject Project in COMPUTER ENGINEERING (7th Semester) of Atmiya

University, Rajkot during the academic year 2022.

Prof. Nirali Borad Prof. Tosal M. Bhalodia

(Project Guide) (Head of the Department)

ACKNOWLEDGEMENT

We have taken many efforts in this project. However, it would not have been

possible without the kind support and help of many individuals and organizations.

We would like to extend our sincere thanks to all of them.

We are highly indebted to Prof. Nirali Borad for their guidance and constant

supervision as well as for providing necessary information regarding the Major

Project titled “STRENGE THINGS OF DIGITAL ERA”. We would like to

express our gratitude towards staff members of Computer Engineering

Department, Atmiya University for their kind co- operation and encouragement

which helped us in completion of this project.

We even thank and appreciate to our colleague in developing the project and

people who have willingly helped us out with the irabilities.

PRINCE CHOVATIYA (190002017)

YAGNIK SAKHIYA (190002098)

HILKUMAR VADODARIYA (190002113)

ABSTRACT

STRANGE THINGS OF DIGITAL ERA Application provides Technological progress is in

almost every single household nowadays; its importance is hard to downplay, and it becomes even

more obvious in the times of the crisis. Could we imagine some months ago what we are going to

face these days? Coronavirus pandemic has been changing the normal flow of everyday life: a lot

of countries have closed their borders, unnecessary travel is reduced to minimum, supermarket

shelves are suddenly getting empty, people are panicking about what is going to happen next…

INDEX

Sr.

No.
TITLES

Page

No.

 Acknowledgement I

 Abstract II

 Index III

 List of Figures VI

 List of Tables VII

1. Introduction 1

 1.1 Introduction 1

 1.2 Purpose 1

 1.3 Scope 1

 1.4 Feasibility study 1

 1.4.1 Operational Feasibility 2

 1.4.2 Technical Feasibility 2

 1.4.3 Economical Feasibility 3

 1.5 Organization of the report 3

 1.5.1 Introduction 3

 1.5.2 Software Requirements Specification 3

 1.5.3 Design &Planning 3

 1.5.4 Results and Discussion 3

 1.5.5 Summary and conclusion 3

2. Software Requirements Specification 4

 2.1 Hardware Requirement 4

 2.2 Software Requirement 4

3. Design &Planning 5

 3.1 Software Development Life Cycle Model 5

 3.1.1 Waterfall Model 5

 3.2 General overview 5

 3.3 DFD(data flow diagram) 6

 3.4 Use case Diagram 8

 3.5 Class Diagram 9

 3.6 Input / Output Interface 9

4 Testing and Implementation 10

 4.1 Unit Testing 10

 4.2 Integration Testing 12

 4.3 Software Verification And Validation 14

 4.3.1 Introduction 14

 Benefits 14

 4.4 Black-Box Testing 15

 4.4.1 Purpose 15

 4.4.2 4.2.1.1 Big Bang 15

 4.5 White-

Box

Testin

g

4.2.1.2 Top-down And Bottom-up 15

 4.5.1 16

 4.5.2 Introduction 16

 4.5.3 Classification Of Methods 16

 4.5.4 Test Cases 17

 4.6 System

Testing

4.3.3.1 Test Suit 17

5 Conclusion 18

LIST OF FIGURES

Figure

No.
Table Title

Page

No.

 3.3 Data Flow Diagram 6

 3.4 Use case Diagram 8

 3.5 Class Diagram 9

1

INTODUCTION

1.1 Introduction

Fat Rat is a massive exploitation tool which is used to compile malwares with famous payloads which

are executed in Mac, Windows Android and Linux environments. It automates the process of embedding

payload on apk files meant for android devices. It also equips backdoors and payloads with antivirus

evading capabilities hence they are able to get into a user device without raising alarm. Some advantages

of using Fat Rat include;

• It automates the process of embedding a payload on apk file.

• It supports many types of backdoors and payloads on different OS platforms.

• It is open source.

1.2. PURPOSE

BeEF uses JavaScript and hence it is easier for us to inject codes to the XSS vulnerable pages and that

code will be and the code will get executed every time any user tries to reach the page.

1.3. Pre-requisites

• Have Kali Linux Operating system installed.

• Have Fat Rat framework installed on your Kali Linux.

• Have ngrok installed and configured.

1.4. FEASIBILITY STUDY

A feasibility study is a high-level capsule version of the entire System analysis and Design Process. The

study begins by classifying the problem definition. Feasibility is to determine if it’s worth doing. Once

an acceptance problem definition has been generated, the analyst develops a logical model of the system.

A search for alternatives is analyzed carefully. There are 3 parts in feasibility study.

1) Operational Feasibility

2) Technical Feasibility

3) Economical Feasibility

https://github.com/screetsec/TheFatRat
https://www.golinuxcloud.com/kali-linux-virtualbox/

2

1.4.1 OPERATIONAL FEASIBILITY

Operational feasibility is the measure of how well a proposed system solves the problems, and takes

advantage of the opportunities identified during scope definition and how it satisfies the requirements

identified in the requirements analysis phase of system development. The operational feasibility

assessment focuses on the degree to which the proposed development projects fits in with the existing

business environment and objectives with regard to development schedule, delivery date, corporate

culture and existing business processes. To ensure success, desired operational outcomes must be

imparted during design and development. These include such design-dependent parameters as reliability,

maintainability, supportability, usability, producibility, disposability, sustainability, affordability and

others. These parameters are required to be considered at the early stages of design if desired operational

behaviors are to be realized. A system design and development require appropriate and timely

application of engineering and management efforts to meet the previously mentioned parameters. A

system may serve its intended purpose most effectively when its technical and operating characteristics

are engineered into the design. Therefore, operational feasibility is a critical aspect of systems

engineering that needs to be an integral part of the early design phases.

1.4.2 TECHNICAL FEASIBILITY

This involves questions such as whether the technology needed for the system exists, how difficult it will

be to build, and whether the firm has enough experience using that technology. The assessment is based

on outline design of system requirements in terms of input, processes, output, fields, programs and

procedures. This can be qualified in terms of volume of data, trends, frequency of updating in order to

give an introduction to the technical system. The application is the fact that it has been developed on

windows XP platform and a high configuration of 1GB RAM on Intel Pentium Dual core processor. This

is technically feasible. The technical feasibility assessment is focused on gaining an understanding of the

present technical resources of the organization and their applicability to the expected needs of the

proposed system. It is an evaluation of the hardware and software and how it meets the need of the

proposed system.

3

1.4.2 ECONOMICAL FEASIBILTY

Establishing the cost-effectiveness of the proposed system i.e., if the benefits do not outweigh the costs,

then it is not worth going ahead. In the fast-paced world today there is a great need of online social

networking facilities. Thus, the benefits of this project in the current scenario make it economically

feasible. The purpose of the economic feasibility assessment is to determine the positive economic

benefits to the organization that the proposed system will provide. It includes quantification and

identification of all the benefits expected. This assessment typically involves a cost/benefits analysis.

1.5 ORGANISATION OF REPORT

1.5.1 INTRODUCTION

This section includes the overall view of the project i.e., the basic problem definition and the general

overview of the problem which describes the problem in layman terms. It also specifies the software

used and the proposed solution strategy.

1.5.2 SOFTWARE REQUIREMENTS SPECIFICATION

This section includes the Software and hardware requirements for the smooth running of the application.

1.5.3 DESIGN & PLANNING

This section consists of the Software Development Life Cycle model. It also contains technical diagrams

like the Data Flow Diagram and the Entity Relationship diagram.

1.5.4 RESULTS AND DISCUSSION

This section has screenshots of all the implementation i.e., user interface and their description.

1.5.5 SUMMARY AND CONCLUSION

This section has screenshots of all the implementation i.e., user interface and their description.

4

CHAPTER 2:

SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

Table 2.1.1 Hardware Requirements

Number Description

1 PC with 250 GB or more Hard disk.

2 PC with 2 GB RAM

3 PC with Pentium 1 and above.

2.2 Software Requirements

 Table 2.2.1 Software Requirements

Number Description Type

1 Operating System Kali Linux

5 Browser Google Chrome

https://www.golinuxcloud.com/kali-linux-virtualbox/

5

CHAPTER 3

 DESIGN & PLANNING

3.1 Software Development Life Cycle Model

3.1.1 WATERFALL MODEL

The waterfall model was selected as the SDLC model due to the following reasons:

Requirements were very well documented, clear and fixed. Technology was adequately understood.

Simple and easy to understand and use. There were no ambiguous requirements.

Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review

process. Clearly defined stages. Well understood milestones easy to arrange tasks.

3.2 GENERAL OVERVIEW

STRENGE THINGS OF DIGITAL ERA Application provides Technological progress is in almost every

single household nowadays; its importance is hard to downplay, and it becomes even more obvious in

the times of the crisis. Could we imagine some months ago what we are going to face these days?

Coronavirus pandemic has been changing the normal flow of everyday life: a lot of countries have closed

their borders, unnecessary travel is reduced to minimum, supermarket shelves are suddenly getting

empty, people are panicking about what is going to happen next…

6

3.3 DATA FLOW DIAGRAM

Level 1 DFD

7

Level 2 DFD

8

3.4USE CASE DIAGRAM

9

3.5 CLASS DIAGRAM

10

CHAPTER 4

TESTING AND IMPLEMENTATION

 The term implementation has different meanings ranging from the conversation of a basic application to

a complete replacement of a computer system. The procedures however, are virtually the same.

Implementation includes all those activities that take place to convert from old system to new. The new

system may be totally new replacing an existing manual or automated system or it may be major

modification to an existing system. The method of implementation and time scale to be adopted is found

out initially. Proper implementation is essential to provide a reliable system to meet organization

requirement.

4.1 UNIT TESTING

4.1.1 Introduction

In computer programming, unit testing is a software testing method by which individual units of source

code, sets of one or more computer program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine whether they are fit for use. Intuitively,

one can view a unit as the smallest testable part of an application. In procedural programming, a unit

could be an entire module, but it is more commonly an individual function or procedure. In object-

oriented programming, a unit is often an entire interface, such as a class, but could be an individual

method. Unit tests are short code fragments created by programmers or occasionally by white box testers

during the development process. It forms the basis for component testing. Ideally, each test case is

independent from the others. Substitutes such as method stubs, mock objects, fakes, and test harnesses

can be used to assist testing a module in isolation. Unit tests are typically written and run by software

developers to ensure that code meets its design and behaves as intended.

11

4.1.2 Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are

correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it

affords several benefits.

1) Find problems early: Unit testing finds problems early in the development cycle. In test-driven

development (TDD), which is frequently used in both extreme programming and scrum, unit tests are

created before the code itself is written. When the tests pass, that code is considered complete. The same

unit tests are run against that function frequently as the larger code base is developed either as the code is

changed or via an automated process with the build. If the unit tests fail, it is considered to be a bug

either in the changed code or the tests themselves. The unit tests then allow the location of the fault or

failure to be easily traced. Since the unit tests alert the development team of the problem before handing

the code off to testers or clients, it is still early in the development process.

2) Facilitates Change: Unit testing allows the programmer to refactor code or upgrade system libraries

at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure

is to write test cases for all functions and methods so that whenever a change causes a fault, it can be

quickly identified. Unit tests detect changes which may break a design contract.

3) Simplifies Integration: Unit testing may reduce uncertainty in the units themselves and can be used

in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of

its parts, integration testing becomes much easier.

4) Documentation: Unit testing provides a sort of living documentation of the system. Developers

looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to

gain a basic understanding of the unit's interface (API).Unit test cases embody characteristics that are

critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a

unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself,

documents these critical characteristics, although many software development environments do not rely

solely upon code to document the product in development.

12

4.2 INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in software

testing in which individual software modules are combined and tested as a group. It occurs after unit

testing and before validation testing. Integration testing takes as its input modules that have been unit

tested, groups them in larger aggregates, applies tests defined in an integration test plan to those

aggregates, and delivers as its output the integrated system ready for system testing.

4.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and reliability requirements

placed on major design items. These "design items", i.e., assemblages (or groups of units), are exercised

through their interfaces using black-box testing, success and error casesbeing simulated via appropriate

parameter and data inputs. Simulated usage of shared data areas and inter-process communication is

tested and individual subsystems are exercised through their input interface. Test cases are constructed to

test whether all the components within assemblages interact correctly, for example across procedure calls

or process activations, and this is done after testing individual modules, i.e., unit testing. The overall idea

is a "building block" approach, in which verified assemblages are added to a verified base which is then

used to support the integration testing of further assemblages.Software integration testing is performed

according to the software development life cycle (SDLC) after module and functional tests. The cross-

dependencies for software integration testing are: schedule for integration testing, strategy and selection

of the tools used for integration, define the cyclomatical complexity of the software and software

architecture, reusability of modules and life-cycle and versioningmanagement.Some different types of

integration testing are big-bang, top-down, and bottom-up, mixed (sandwich) and risky-hardest. Other

Integration Patterns [2] are: collaboration integration, backbone integration, layer integration, client-

server integration, distributed services integration and high-frequency integration.

13

4.2.1.1 Big Bang

In the big-bang approach, most of the developed modules are coupled together to form a complete

software system or major part of the system and then used for integration testing. This method is very

effective for saving time in the integration testing process. However, if the test cases and their results are

not recorded properly, the entire integration process will be more complicated and may prevent the

testing team from achieving the goal of integration testing. A type of big-bang integration testing is

called "usage model testing" which can be used in both software and hardware integration testing. The

basis behind this type of integration testing is to run user-like workloads in integrated user-like

environments. In doing the testing in this manner, the environment is proofed, while the individual

components are proofed indirectly through their use. Usage Model testing takes an optimistic approach

to testing, because it expects to have few problems with the individual components. The strategy relies

heavily on the component developers to do the isolated unit testing for their product. The goal of the

strategy is to avoid redoing the testing done by the developers, and instead flesh-out problems caused by

the interaction of the components in the environment. For integration testing, Usage Model testing can be

more efficient and provides better test coverage than traditional focused functional integration testing. To

be more efficient and accurate, care must be used in defining the user-like workloads for creating

realistic scenarios in exercising the environment. This gives confidence that the integrated environment

will work as expected for the target customers.

4.2.1.2 Top-down And Bottom-up

Bottom-up testing is an approach to integrated testing where the lowest level components are tested first,

then used to facilitate the testing of higher-level components. The process is repeated until the

component at the top of the hierarchy is tested. All the bottom or low-level modules, procedures or

functions are integrated and then tested. After the integration testing of lower-level integrated modules,

the next level of modules will be formed and can be used for integration testing. This approach is helpful

only when all or most of the modules of the same development level are ready. This method also helps to

determine the levels of software developed and makes it easier to report testing progress in the form of a

percentage. Top-down testing is an approach to integrated testing where the top integrated modules are

tested and the branch of the module is tested step by step until the end of the related module. Sandwich

testing is an approach to combine top-down testing with bottom-up testing.

14

4.3 SOFTWARE VERIFICATION AND VALIDATION

4.3.1 Introduction

In software project management, software testing, and software engineering, verification and validation

(V&V) is the process of checking that a software system meets specifications and that it fulfills its

intended purpose. It may also be referred to as software quality control. It is normally the responsibility

of software testers as part of the software development lifecycle. Validation checks that the product

design satisfies or fits the intended use (high-level checking), i.e., the software meets the user

requirements. This is done through dynamic testing and other forms of review.Verification and

validation are not the same thing, although they are often confused. Boehm succinctly expressed the

difference between

Validation: Are we building the right product?

Verification: Are we building the product, right?

According to the Capability Maturity Model (CMMI-SW v1.1)

Software Verification: The process of evaluating software to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.

Software Validation: The process of evaluating software during or at the end of the development process

to determine whether it satisfies specified requirements.

In other words, software verification is ensuring that the product has been built according to the

requirements and design specifications, while software validation ensures that the product meets the

user's needs, and that the specifications were correct in the first place. Software verification ensures that

"you built it right". Software validation ensures that "you built the right thing". Software validation

confirms that the product, as provided, will fulfill its intended use.

From Testing Perspective

Fault – wrong or missing function in the code.

Failure – the manifestation of a fault during execution.

Malfunction – according to its specification the system does not meet its specified functionality

Both verification and validation are related to the concepts of quality and of software quality assurance.

By themselves, verification and validation do not guarantee software quality; planning, traceability,

configuration management and other aspects of software engineering are required.Within the modeling

and simulation (M&S) community, the definitions of verification, validation and accreditation are

similar:

M&S Verification is the process of determining that a ⦁ computer model, simulation, or federation of

models and simulations implementations and their associated data accurately represent the developer's

conceptual description and specifications.

M&S Validation is the process of determining the degree to which a model, simulation, or federation of

models and simulations, and their associated data are accurate representations of the real world from the

perspective of the intended use(s).

15

4.4 Black-Box Testing

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually to

every level of software testing: unit, integration, system and acceptance. It typically comprises most if

not all higher-level testing, but can also dominate unit testing as well.

4.4.1 Test Procedures

Specific knowledge of the application's code/internal structure and programming knowledge in general is

not required. The tester is aware of what the software is supposed to do but is not aware of how it does it.

For instance, the tester is aware that a particular input returns a certain, invariable output but is not aware

of how the software produces the output in the first place.

4.4.2 Test Cases

Test cases are built around specifications and requirements, i.e., what the application is supposed to do.

Test cases are generally derived from external descriptions of the software, including specifications,

requirements and design parameters. Although the tests used are primarily functional in nature, non-

functional tests may also be used. The test designer selects both valid and invalid inputs and determines

the correct output, often with the help of an oracle or a previous result that is known to be good, without

any knowledge of the test object's internal structure.

4.5 White-Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and

structural testing) is a method of testing software that tests internal structures or workings of an

application, as opposed to its functionality (i.e. black-box testing). In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. The tester chooses

inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to

testing nodes in a circuit, e.g., in-circuit testing (ICT). White-box testing can be applied at the unit,

integration and system levels of the software testing process. Although traditional testers tended to think

of white-box testing as being done at the unit level, it is used for integration and system testing more

frequently today. It can test paths within a unit, paths between units during integration, and between

subsystems during a system–level test. Though this method of test design can uncover many errors or

problems, it has the potential to miss unimplemented parts of the specification or missing requirements.

16

4.5.1 Levels

1) Unit testing: White-box testing is done during unit testing to ensure that the code is working as

intended, before any integration happens with previously tested code. White-box testing during unit

testing catches any defects early on and aids in any defects that happen later on after the code is

integrated with the rest of the application and therefore prevents any type of errors later on.

2) Integration testing: White-box testing at this level are written to test the interactions of each interface

with each other. The Unit level testing made sure that each code was tested and working accordingly in

an isolated environment and integration examines the correctness of the behavior in an open environment

through the use of white-box testing for any interactions of interfaces that are known to the programmer.

3) Regression testing: White-box testing during regression testing is the use of recycled white-box test

cases at the unit and integration testing levels.

4.5.2 Procedures

White-box testing's basic procedures involves the tester having a deep level of understanding of the

source code being tested. The programmer must have a deep understanding of the application to know

what kinds of test cases to create so that every visible path is exercised for testing. Once the source code

is understood then the source code can be analyzed for test cases to be created. These are the three basic

steps that white-box testing takes in order to create test cases:

Input involves different types of requirements, functional specifications, detailed designing of

documents, proper source code, security specifications. This is the preparation stage of white-box testing

to layout all of the basic information.

Processing involves performing risk analysis to guide whole testing process, proper test plan, execute

test cases and communicate results. This is the phase of building test cases to make sure they thoroughly

test the application the given results are recorded accordingly.

Output involves preparing final report that encompasses all of the above preparations and result

4.5.3 Advantages

White-box testing is one of the two biggest testing methodologies used today. It has several major

advantages:

Side effects of having the knowledge of the source code is beneficial to thorough testing.

Optimization f code by revealing hidden errors and being able to remove these possible defects.

Gives the programmer introspection because developers carefully describe any new implementation.

Provides traceability of tests from the source, allowing future changes to the software to be easily

captured in changes to the tests.

White box testing gives clear, engineering-based, rules for when to stop testing.

17

4.5.4 Disadvantages

Although white-box testing has great advantages, it is not perfect and contains some disadvantages:

White-box testing brings complexity to testing because the tester must have knowledge of the program,

including being a programmer. White-box testing requires a programmer with a high level of knowledge

due to the complexity of the level of testing that needs to be done.

On some occasions, it is not realistic to be able to test every single existing condition of the application

and some conditions will be untested.

The tests focus on the software as it exists, and missing functionality may not be discovered.

4.6 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black-box testing, and as such, should require no knowledge of the inner design of the

code or logic. As a rule, system testing takes, as its input, all of the "integrated" software

components that have passed integration testing and also the software system itself integrated with

any applicable hardware system(s). The purpose of integration testing is to detect any

inconsistencies between the software units that are integrated together (called assemblages) or

between any of the assemblages and the hardware. System testing is a more limited type of

testing; it seeks to detect defects both within the "inter-assemblages" and also within the system as

a whole.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing tests not

only the design, but also the behavior and even the believed expectations of the customer. It is

also intended to test up to and beyond the bounds defined in the software/hardware requirements

specification(s).

18

CHAPTER 5

CONCLUSION

STRENGE THINGS OF DIGITAL ERA as an industry as an infant stage. It has long way to go. It has a

bright future. This industry is growing at reasonably quick rate. There should also be a set of standards

for the events that are being conducted. In the near future, the companies form a network association in

different stages in order to expand the industry so that events can be held professionally.

