
ATMIYA UNIVERSITY

RAJKOT

A

Report On

ELECTROPEDIA

Under subject of

PROJECT

B.TECH, Semester– VII

(Computer Engineering)

Submitted by:

1. JENIL VACHHANI 190002112

2. RAYJADA DHRUVRAJSINH 190002098

Prof. Nirali Borad

(Faculty Guide)

Prof. Tosal M.Bhalodia

(Head of the Department)

Academic Year

(2022-23)

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this project entitled

“ELECTROPEDIA” submitted towards completion of project in 7th Semester of

B.Tech (Computer Engineering) is an authentic record of our original work carried

out under the guidance of “Prof. Nirali Borad”.

We have not submitted the matter embodied in this project for the award of any

other degree.

Semester: 7th

Place: Rajkot

Signature:

Rayjada Dhruvrajsinh

(180002098)

Vachhani Jenil

(190002112)

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

 This is to certify that the “ELECTROPEDIA” has been carried out by

Rayjada Dhruvrajsinh under my guidance in fulfillment of the subject Project in

COMPUTER ENGINEERING (7thSemester) of Atmiya University, Rajkot during

the academic year 2022.

Prof. Nirali Borad Prof. Tosal M.Bhalodia

(Project Guide) (Head of the Department)

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

 This is to certify that the “ELECTROPEDIA” has been carried out by

Vachhani Jenil under my guidance in fulfillment of the subject Project in

COMPUTER ENGINEERING (7thSemester) of Atmiya University, Rajkot during

the academic year 2022.

Prof. Nirali Borad Prof. Tosal M.Bhalodia

(Project Guide) (Head of the Department)

ACKNOWLEDGEMENT

We have taken many efforts in this project. However, it would not have been

possible without the kind support and help of many individuals and organizations.

We would like to extend our sincere thanks to all of them.

We are highly indebted to Prof. Nirali Borad for their guidance and constant

supervision as well as for providing necessary information regarding the Mini

Project titled “ELECTROPEDIA”. We would like to express our gratitude

towards staff members of Computer Engineering Department, Atmiya University

for their kind co- operation and encouragement which helped us in completion of

this project.

We even thank and appreciate to our colleague in developing the project and

people who have willingly helped us out with their abilities.

Rayjada Dhruvrajsinh

(180002098)

Vachhani Jenil

(190002112)

III

ABSTRACT

Our project is about predicting how much capacity any device (inverter, generator)

would require for users’ homes, offices, or any place. If there is some shortage or

regular cuts of electricity in some area and user want an inverter then by using our

website and by just adding the items they are using like (AC, Fans, Lights, T.V, etc.)

They would know how much capacity of the inverter they have to buy. And by

doing so, he/she don’t have to go for different sites and pages, here in one website

we will provide this facility.

IV

INDEX

Sr.

No.
TITLES

Page

No.

 Acknowledgement I

 Abstract III

 Index IV

 List of Figures VII

 List of Tables VIII

1. Introduction 1

 1.1 Introduction 1

 1.2 Purpose 1

 1.3 Scope 1

 1.4 Project Objective 1

2. Software Requirements Specification 2

 2.1 Hardware Requirement 2

 2.1.1 Hardware Requirement Description 2

 2.2 Software Requirement 2

 2.2.1 Software Requirement Description 2

3. Design &Planning 3

 3.1 Project planning 3

 3.1.1 Project development approach and justification 3

 3.2 System design 4

 3.3 Activity diagram 5

 3.4 Class Diagram 7

 3.5 ER Diagram 8

 3.6 Use Case Diagram 9

 3.7 Input / Output Interface 10

4. Implementation Details 22

 4.1 Front End 22

 4.1.1 HTML 22

 4.1.2 CSS 23

 4.2 Back End 24

 4.2.1 Python (Django) 24

V

 4.3 Coding Standards 25

 4.3.1 Variable Standard 25

 4.3.2 Comment Standard 25

 4.4 Program/Module Specification 26

5 Testing and Implementation 27

 5.1 Unit Testing 27

 5.1.1 Introduction 27

 5.1.2 Benefits 27

 5.2 Integration Testing 28

 5.2.1 Purpose 29

 5.2.1.1 Big Bang 29

 5.2.1.2 Top-down And Bottom-up 30

 5.3 Software Verification And Validation 30

 5.3.1 Introduction 30

 5.3.2 Classification Of Methods 31

 5.3.3 Test Cases 31

 5.3.3.1 Test Suit 32

 5.4 Black-Box Testing 32

 5.4.1 Test Procedures 32

 5.4.2 Test Cases 32

 5.5 White-Box Testing 33

 5.5.1 Levels 33

 5.5.2 Procedures 33

 5.5.3 Advantages 34

 5.5.4 Disadvantages 34

 5.6 System Testing 34

6 Limitations 35

7 Conclusion 36

8 References 37

VI

LIST OF FIGURES

Figure

No.
Table Title

Page

No.

3.3 ACTIVITY DIAGRAM 5

3.4 CLASS DIAGRAM 7

3.5 E-R DIAGRAM 8

3.6 USE CASE DIAGRAM 9

 3.7 Input/ Output Interface 10

 3.7.1 Home Page 10

 3.7.2 Login Page 12

 3.7.3 Create An Account Page 12

 3.7.4 UPS Categories Page 13

 3.7.5 Stabilizer Categories Page 13

 3.7.6 Inverter Categories Page 14

 3.7.7 Generator Categories Page 14

 3.7.8 Battery Categories Page 15

 3.7.9.1 Know Your Requirement Page 15

 3.7.9.2 Know Your Requirement Page 16

 3.7.9.3 Know Your Requirement Page 16

 3.7.10.1 Contact Us Page 17

 3.7.10.2 Contact Us Page 17

 3.7.11 My Order Page 18

 3.7.12 Django Administration Login Page 18

 3.7.12.1 Admin User Login Page 19

 3.7.12.2 Admin Categories Page 19

 3.7.12.3 Admin Devices Page 20

 3.7.12.4 Admin Products Page 20

 3.7.12.5 Admin Order Page 21

VII

LIST OF TABLES

Table

No.

Table Title Page

No.

2.1.1 Hardware Requirements 2

2.2.1 Software Requirements 2

5.3.3.1 Admin Login Test 32

1

INTODUCTION

1.1 Introduction

The major objective is to solve the issues faced with electricity cuts and what to buy for resolving that

issue. Another problem is that we don't know what product the client is searching for, and hence we

made a web for that. A point that displays a huge list of products from different orders, similar to

electronics, mobiles, clothes, or books, needs to be suitable to identify what the client is searching for. A

client can be searching for any generator or any machine then just by adding the items and the used

machine in the particular office/area, they can find the machine to be used and which is best for them.

The machines included in our web are UPS, Solar, Solar Plates, Inverter, Generator, etc.

1.2 PURPOSE

The electricity can be at any required voltage; in particular, it can operate AC equipment designed for

mains operation, or rectified to produce DC at any desired voltage. For example, if your DVD player

draws 100 watts and your laptop another 100 watts, a minimum 300-watt inverter is recommended. If the

item is motor-driven, it requires additional start-up (surge) wattage (typically 2-3 times the continuous

wattage required) to start the device.

1.3 SCOPE

It will provide a user friendly environment for buying any products via using our site. It has an inbuilt

calculator which will provide any item of there need by just adding the number of appliances into the

form Admin can add/delete product, devices, category.

1.4 PROJECT OBJECTIVE

In literature survey we look into the details of other systems which are built like our project but in that

we don’t have the sections of what to buy for the particular area and so we made a project which can

decide the item according to the area or according to the requirement. Here we try to reduce the

disadvantages of the systems and tried to improve the performance and the efficiency of the new system.

The existing Electropedia is an online application that can be accessed throughout the organization and

outside as well with proper login This system can be used as an application for the ADMIN of any area

that have to handle office or any other large industries to manage the system information with regards to

handle this type of large area system .

2

CHAPTER 2

 SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

Table 2.1.1 Hardware Requirements

Number Description

1 PC with 250 GB or more Hard disk.

2 PC with 2 GB RAM

3 PC with Pentium 1 and Above.

2.2 Software Requirements

 Table 2.2.1 Software Requirements

Number Description Type

1 Operating System Windows XP / Windows

2 Language Python

3 Database MySQL

4 IDE Pycharm, VSCODE

5 Browser Google Chrome

3

CHAPTER 3

 PLANNING & DESIGN

3.1 PROJECT PLANNING

Project management report is an essential project management tool. It provides a summary overview of

the project's status that you can share with stakeholders, clients and team members. Ideally, the project

report is just a page or two long.

The project planning phase refers to:

 Developing a project to make it ready for investment.

 Determines the jobs/tasks required to attain project objectives.

 Identifying essential project sponsors and stakeholders in order to establish the project's scope,

budget, and timeline for completion.

 Upon enlisting the stakeholder requirements, prioritizing/setting project objectives.

 Identifying the project deliverables required to attain the project objectives.

 Creating the project schedule.

 Identifying and developing appropriate mitigation plans for project risks, if any.

 Communicating and presenting the project plan to stakeholders.

3.1.1 PROJECT DEVELOPMENT APPROACH AND JUSTIFICATION

 I have started Project Development from deciding name of the website, after that I have decided color

scheme and logo of the website. Then I have created wireframes for front end designing. After that, I

started the front-end development by HTML, CSS and JavaScript, after that I have done database

connection with the help of PHP and XAMPP server also used Python Django.

4

3.2 SYSTEM DESIGN

System design is started by making various UML diagrams of the project.

The list of diagrams is:

 Activity Diagram

 Class Diagram

 E-R Diagram

 Use a case Diagram

 Data Dictionary Diagram

5

3.3 ACTIVITY DIAGRAM

6

7

3.4 CLASS DIAGRAM

8

3.5 E-R DIAGRAM

9

3.6 USE CASE DIAGRAM

10

3.7 Input /Output Interface

Fig.3.7.1.1 Home Page

Fig.3.7.1.2 Home Page

11

Fig.3.7.1.3 Home Page

Fig.3.7.1.4 Home Page

12

Fig.3.7.2 Login Page

Fig.3.7.3 Create An Account Page

13

Fig.3.7.4 UPS Categories Page

Fig.3.7.5 Stabilizer Categories Page

14

Fig.3.7.6 Inverter Categories Page

Fig.3.7.7 Generator Categories Page

15

Fig.3.7.8 Battery Categories Page

Fig.3.7.9.1 Know Your Requirement Page

16

Fig.3.7.9.2 Know Your Requirement Page

Fig.3.7.9.3 Know Your Requirement Page

17

Fig.3.7.10.1 Contact Us Page

Fig.3.7.10.2 Contact Us Page

18

Fig.3.7.10.3 My Order Page

Fig.3.7.11 DJANGO ADMINISTRATION LOGIN PAGE

19

Fig.3.7.11.1 ADMIN USER LOGIN PAGE

Fig.3.7.11.2 ADMIN CATEGORY PAGE

20

Fig.3.7.11.3 ADMIN DEVICES PAGE

Fig.3.7.11.4 ADMIN PRODUCTS PAGE

21

Fig.3.7.11.5 ADMIN ORDER PAGE

22

CHAPTER 4

IMPLEMENTATION DETAILS

 In this Section we will do Analysis of Technologies to use for implementing the project.

4.1 FRONT END

4.1.1 HTML

Hypertext Markup Language (HTML) is the standard markup language for documents designed to be

displayed in a web browser. It can be assisted by technologies such as Cascading Style Sheets (CSS) and

scripting languages such as JavaScript. Web browsers receive HTML documents from a web server or

from local storage and render the documents into multimedia web pages. HTML describes the structure

of a web page semantically and originally included cues for the appearance of the document.

HTML elements are the building blocks of HTML pages. With HTML constructs, images and other

objects such as interactive forms may be embedded into the rendered page. HTML provides a means to

create structured documents by denoting structural semantics for text such as headings, paragraphs, lists,

links, quotes and other items. HTML elements are delineated by tags, written using angle brackets. Tags

such as and <input /> directly introduce content into the page. Other tags such as <p> surround

and provide information about document text and may include other tags as sub-elements. Browsers do

not display the HTML tags, but use them to interpret the content of the page.

HTML can embed programs written in a scripting language such as JavaScript, which affects the

behavior and content of web pages. Inclusion of CSS defines the look and layout of content. The World

Wide Web Consortium (W3C), former maintainer of the HTML and current maintainer of the CSS

standards, has encouraged the use of CSS over explicit presentational HTML since 1997.

23

4.1.2 CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of a

document written in a markup language like HTML.CSS is a cornerstone technology of the World Wide

Web, alongside HTML and JavaScript.CSS is designed to enable the separation of presentation and

content, including layout, colors, and fonts. This separation can improve content accessibility, provide

more flexibility and control in the specification of presentation characteristics, enable multiple web pages

to share formatting by specifying the relevant CSS in a separate .css file, and reduce complexity and

repetition in the structural content.

CSS information can be provided from various sources. These sources can be the web browser, the user

and the author. The information from the author can be further classified into inline, media type,

importance, selector specificity, rule order, inheritance and property definition. CSS style information

can be in a separate document or it can be embedded into an HTML document. Multiple style sheets can

be imported. Different styles can be applied depending on the output device being used; for example, the

screen version can be quite different from the printed version, so that authors can tailor the presentation

appropriately foreach medium.The style sheet with the highest priority controls the content display.

Declarations not set in the highest priority source are passed on to a source of lower priority, such as the

user agent style. The process is called cascading.

One of the goals of CSS is to allow users greater control over presentation. Someone who finds red italic

headings difficult to read may apply a different style sheet. Depending on the browser and the web site, a

user may choose from various style sheets provided by the designers, or may remove all added styles and

view the site using the browser's default styling, or may override just the red italic heading style without

altering other attributes.

24

4.2 BACK END

4.2.1 PYTHON DJANGO

Django's primary goal is to ease the creation of complex, database-driven websites. The

framework emphasizes reusability and "pluggability" of components, less code, low

coupling, rapid development, and the principle of don't repeat yourself. Python is used

throughout, even for settings, files, and data models. Django also provides an optional

administrative create, read, update and delete interface that is generated dynamically

through introspection and configured via admin models.

Tool Used: PYCHARM, VS CODE, GOOGLE CHROME, MOZILLA FIREFOX.

Database: A database is a collection of tables, with related data.

Table: A table is a matrix with data. A table in a database looks like a simple spadsheet.

Column: One column (data element) contains data of one and the same kind, for example the column

postcode.

Row: A row (= tuple, entry or record) is a group of related data, for example the data of one subscription.

Redundancy: Storing data twice, redundantly to make the system faster.

Primary Key: A primary key is unique. A key value cannot occur twice in one table. With a key, you

can find at most one row.

Foreign Key: A foreign key is the linking pin between two tables.

Compound Key: A compound key (composite key) is a key that consists of multiple columns because

one column is not sufficiently unique.

https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Type_introspection

25

Index: An index in a database resembles an index at the back of a book.

Referential Integrity: Referential Integrity makes sure that a foreign key value always points to an

existing row.

4.3 Coding Standards

Normally, good software development organization requires their programmers to adhere to some well

defined and standard style of coding called coding standard.

4.3.1 Variable Standards:

We have used meaningful variables name.

4.3.2 Comment Standards:

The comment should describe what is happening, how it is being done, what parameters mean, which

global are used and which are modified, and any registration or bugs. The standards I have followed are:

 Every script should begin with a comment block, which describes the scripts purpose; any

argument used (if applicable), and return values (if applicable), inputs-outputs, and name of

script.

 Comment may also be used in the body of the script to explain individual sections or lines of

codes.

 It is also used to describe variable definition or declarations.

 Inline comments should be made with the. //. Comment style and should be indented at the same

level as the code described.

 For multiple line comments we write between /* ….*/.

26

4.4 Program/Module Specification

 System GUI must be as simple and user friendly as anyone can use it. At front side we

implemented registration form for access the system.

 Authentication is necessary to enter into the system only if one requires to start his/her own

project. This is required to prevent unauthorized access to the system.

 If someone steals the password of the administrator or any regular user then he can able to change

the database or misuse the system and can enter in restricted area so for this purpose system will

provide encrypted password storage format in the database. Option to change the Password.

 A Session is maintained throughout the system when a particular user enters into the system. The

Session is regularly checked whenever it is required.

27

CHAPTER 5

TESTING AND IMPLEMENTATION

 The term implementation has different meanings ranging from the conversation of a basic application to

a complete replacement of a computer system. The procedures however, are virtually the same.

Implementation includes all those activities that take place to convert from old system to new. The new

system may be totally new replacing an existing manual or automated system or it may be major

modification to an existing system. The method of implementation and time scale to be adopted is found

out initially. Proper implementation is essential to provide a reliable system to meet organization

requirement.

5.1 UNIT TESTING

5.1.1 Introduction

In computer programming, unit testing is a software testing method by which individual units of source

code, sets of one or more computer program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine whether they are fit for use. Intuitively,

one can view a unit as the smallest testable part of an application. In procedural programming, a unit

could be an entire module, but it is more commonly an individual function or procedure. In object-

oriented programming, a unit is often an entire interface, such as a class, but could be an individual

method. Unit tests are short code fragments created by programmers or occasionally by white box testers

during the development process. It forms the basis for component testing. Ideally, each test case is

independent from the others. Substitutes such as method stubs, mock objects, fakes, and test harnesses

can be used to assist testing a module in isolation. Unit tests are typically written and run by software

developers to ensure that code meets its design and behaves as intended.

5.1.2 Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are

correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it

affords several benefits.

28

1) Find problems early : Unit testing finds problems early in the development cycle. In test-driven

development (TDD), which is frequently used in both extreme programming and scrum, unit tests are

created before the code itself is written. When the tests pass, that code is considered complete. The same

unit tests are run against that function frequently as the larger code base is developed either as the code is

changed or via an automated process with the build. If the unit tests fail, it is considered to be a bug

either in the changed code or the tests themselves. The unit tests then allow the location of the fault or

failure to be easily traced. Since the unit tests alert the development team of the problem before handing

the code off to testers or clients, it is still early in the development process.

2) Facilitates Change : Unit testing allows the programmer to refactor code or upgrade system libraries

at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure

is to write test cases for all functions and methods so that whenever a change causes a fault, it can be

quickly identified. Unit tests detect changes which may break a design contract.

3) Simplifies Integration : Unit testing may reduce uncertainty in the units themselves and can be used

in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of

its parts, integration testing becomes much easier.

4) Documentation : Unit testing provides a sort of living documentation of the system. Developers

looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to

gain a basic understanding of the unit's interface (API).Unit test cases embody characteristics that are

critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a

unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself,

documents these critical characteristics, although many software development environments do not rely

solely upon code to document the product in development.

5.2 INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in software

testing in which individual software modules are combined and tested as a group. It occurs after unit

testing and before validation testing. Integration testing takes as its input modules that have been unit

tested, groups them in larger aggregates, applies tests defined in an integration test plan to those

aggregates, and delivers as its output the integrated system ready for system testing.

29

5.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and reliability requirements

placed on major design items. These "design items", i.e., assemblages (or groups of units), are exercised

through their interfaces using black-box testing, success and error casesbeing simulated via appropriate

parameter and data inputs. Simulated usage of shared data areas and inter-process communication is

tested and individual subsystems are exercised through their input interface. Test cases are constructed to

test whether all the components within assemblages interact correctly, for example across procedure calls

or process activations, and this is done after testing individual modules, i.e., unit testing. The overall idea

is a "building block" approach, in which verified assemblages are added to a verified base which is then

used to support the integration testing of further assemblages.Software integration testing is performed

according to the software development life cycle (SDLC) after module and functional tests.

5.2.1.1 Big Bang

In the big-bang approach, most of the developed modules are coupled together to form a complete

software system or major part of the system and then used for integration testing. This method is very

effective for saving time in the integration testing process. However, if the test cases and their results are

not recorded properly, the entire integration process will be more complicated and may prevent the

testing team from achieving the goal of integration testing.A type of big-bang integration testing is called

"usage model testing" which can be used in both software and hardware integration testing. The basis

behind this type of integration testing is to run user-like workloads in integrated user-like environments.

In doing the testing in this manner, the environment is proofed, while the individual components are

proofed indirectly through their use. Usage Model testing takes an optimistic approach to testing,

because it expects to have few problems with the individual components. The strategy relies heavily on

the component developers to do the isolated unit testing for their product. The goal of the strategy is to

avoid redoing the testing done by the developers, and instead flesh-out problems caused by the

interaction of the components in the environment. For integration testing, Usage Model testing can be

more efficient and provides better test coverage than traditional focused functional integration testing. To

be more efficient and accurate, care must be used in defining the user-like workloads for creating

realistic scenarios in exercising the environment. This gives confidence that the integrated environment

will work as expected for the target customers.

30

5.2.1.2 Top-down And Bottom-up

Bottom-up testing is an approach to integrated testing where the lowest level components are tested first,

then used to facilitate the testing of higher level components. The process is repeated until the

component at the top of the hierarchy is tested.All the bottom or low-level modules, procedures or

functions are integrated and then tested. After the integration testing of lower level integrated modules,

the next level of modules will be formed and can be used for integration testing. This approach is helpful

only when all or most of the modules of the same development level are ready. This method also helps to

determine the levels of software developed and makes it easier to report testing progress in the form of a

percentage.Top-down testing is an approach to integrated testing where the top integrated modules are

tested and the branch of the module is tested step by step until the end of the related module.Sandwich

testing is an approach to combine top down testing with bottom up testing.

5.3 SOFTWARE VERIFICATION AND VALIDATION

5.3.1 Introduction

In software project management, software testing, and software engineering, verification and validation

(V&V) is the process of checking that a software system meets specifications and that it fulfills its

intended purpose. It may also be referred to as software quality control. It is normally the responsibility

of software testers as part of the software development lifecycle. Validation checks that the product

design satisfies or fits the intended use (high-level checking), i.e., the software meets the user

requirements.This is done through dynamic testing and other forms of review.Verification and validation

are not the same thing, although they are often confused. Boehm succinctly expressed the difference

between

Validation : Are we building the right product?

Verification : Are we building the product right?

According to the Capability Maturity Model (CMMI-SW v1.1)

31

Software Verification: The process of evaluating software to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.

Software Validation: The process of evaluating software during or at the end of the development process

to determine whether it satisfies specified requirements.

M&S Verification is the process of determining that a ⦁ computer model, simulation, or federation of

models and simulations implementations and their associated data accurately represent the developer's

conceptual description and specifications.

M&S Validation is the process of determining the degree to which a model, simulation, or federation of

models and simulations, and their associated data are accurate representations of the real world from the

perspective of the intended use(s).

5.3.2 Classification of Methods

In mission-critical software systems, where flawless performance is absolutely necessary, formal

methods may be used to ensure the correct operation of a system. However, often for non-mission-

critical software systems, formal methods prove to be very costly and an alternative method of software

V&V must be sought out. In such cases, syntactic methods are often used.

5.3.3 Test Cases

A test case is a tool used in the process. Test cases may be prepared for software verification and

software validation to determine if the product was built according to the requirements of the user. Other

methods, such as reviews, may be used early in the life cycle to provide for software validation.

32

5.3.3.1 Test Suit

Admin login test:

Test Case Test Data Test Result Test Report
Blank Username Username Invalid Fill required detail

Invalid Username Username:

ADMIN

Invalid Username

Incorrect

Invalid Password Password: user Invalid Password

Incorrect

Valid Username

and Password

Username: admin

Password: admin

Valid Login

 Table 5.3.3.1.1 Admin Login Test

5.4 Black-Box Testing

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually to

every level of software testing: unit, integration, system and acceptance. It typically comprises most if

not all higher level testing, but can also dominate unit testing as well

5.4.1 Test Procedures

Specific knowledge of the application's code/internal structure and programming knowledge in general is

not required. The tester is aware of what the software is supposed to do but is not aware of how it does it.

For instance, the tester is aware that a particular input returns a certain, invariable output but is not aware

of how the software produces the output in the first place.

5.4.2 Test Cases

Test cases are built around specifications and requirements, i.e., what the application is supposed to do.

Test cases are generally derived from external descriptions of the software, including specifications,

requirements and design parameters. Although the tests used are primarily functional in nature, non-

functional tests may also be used. The test designer selects both valid and invalid inputs and determines

the correct output, often with the help of an oracle or a previous result that is known to be good, without

any knowledge of the test object's internal structure.

33

5.5 White-Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and

structural testing) is a method of testing software that tests internal structures or workings of an

application, as opposed to its functionality (i.e. black-box testing). In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. The tester chooses

inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to

testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit,

integration and system levels of the software testing process. Although traditional testers tended to think

of white-box testing as being done at the unit level, it is used for integration and system testing more

frequently today. It can test paths within a unit, paths between units during integration, and between

subsystems during a system–level test. Though this method of test design can uncover many errors or

problems, it has the potential to miss unimplemented parts of the specification or missing requirements.

5.5.1 Levels

1) Unit testing : White-box testing is done during unit testing to ensure that the code is working as

intended, before any integration happens with previously tested code. White-box testing during unit

testing catches any defects early on and aids in any defects that happen later on after the code is

integrated with the rest of the application and therefore prevents any type of errors later on.

2) Integration testing : White-box testing at this level are written to test the interactions of each

interface with each other. The Unit level testing made sure that each code was tested and working

accordingly in an isolated environment and integration examines the correctness of the behaviorin an

open environment through the use of white-box testing for any interactions of interfaces that are known

to the programmer.

3) Regression testing : White-box testing during regression testing is the use of recycled white-box test

cases at the unit and integration testing levels.

5.5.2 Procedures

White-box testing's basic procedures involves the tester having a deep level of understanding of the

source code being tested. The programmer must have a deep understanding of the application to know

what kinds of test cases to create so that every visible path is exercised for testing. Once the source code

34

is understood then the source code can be analyzed for test cases to be created. These are the three basic

steps that white-box testing takes in order to create test cases:

Processing involves performing risk analysis to guide whole testing process, proper test plan, execute

test cases and communicate results. This is the phase of building test cases to make sure they thoroughly

test the application the given results are recorded accordingly.

Output involves preparing final report that encompasses all of the above preparations and results.

5.5.3 Advantages

White-box testing is one of the two biggest testing methodologies used today. It has several major

advantages:

 Side effects of having the knowledge of the source code is beneficial to thorough testing.

Optimization f code by revealing hidden errors and being able to remove these possible defects. Gives

the programmer introspection because developers carefully describe any new implementation.

5.5.4 Disadvantages

Although white-box testing has great advantages, it is not perfect and contains some disadvantages:

White-box testing brings complexity to testing because the tester must have knowledge of the program,

including being a programmer. White-box testing requires a programmer with a high level of knowledge

due to the complexity of the level of testing that needs to be done.

5.6 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black-box testing, and as such, should require no knowledge of the inner design of the

code or logic. As a rule, system testing takes, as its input, all of the "integrated" software

components that have passed integration testing and also the software system itself integrated with

any applicable hardware system(s). The purpose of integration testing is to detect any

inconsistencies between the software units that are integrated together (called assemblages) or

between any of the assemblages and the hardware. System testing is a more limited type of

testing; it seeks to detect defects both within the "inter-assemblages" and also within the system as

a whole.

35

 CHAPTER 6

LIMITATIONS

Software development is never an ending process and continues the life of the software as per the

changing needs of the user from time to time. The project is no doubt has been developed keeping in

mind easy modification and enhancement that may be required from time to time.

However, there are many scopes to modify this software. As because due to a shortage of time, we here

become unable to include many things. We are trying to cover all their existing system for sales return

records of the items but due to a shortage of time, we become unable to include many things. Due to the

lack of time, I here include none of them and a future scope one can develop these returns which are so

much essential. Only with a little more doing it is possible to design the formats for those returns.

Moreover, an online system will be more helpful to the organization. . With almost the same data with

only a little modification, an online system can be designed to fulfill their demands. All these can be

considered to be future scope for this project.

36

CHAPTER 7

CONCLUSION

ELECTROPEDIA – Electronic product Website which includes home page, log in, sign up, Know your

requirement page, contact us, etc. It is helpful for people having a busy lifestyle and users not working

without electricity. The website helps buy a product as per customer requirement. Customer does not

require to make any physical activity, by just using Electropedia website he/she can know his/her

requirement by just sitting at home and make life easy.

37

CHAPTER 8

REFERENCES

https://docs.soliditylang.org/en/v0.8.12/

https://vitejs.dev/

https://docs.soliditylang.org/en/v0.8.12/

