
ATMIYA UNIVERSITY

RAJKOT

A

 Report On

E-VEGETABLE MARKET MANAGEMENT

Under subject of

MAJOR PROJECT

B.TECH, Semester – VII

(Computer Engineering)

Submitted by:

 Prachi Pravinbhai Ardeshna (201002002)

 Moxa Prakashbhai Sodha (201002025)

Prof. Nirali Borad

 (Faculty Guide)

Prof. Tosal M. Bhalodia

(Head of the Department)

Academic Year

(2020-21)

6 | P a g e

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this project entitled “E-

VEGETABLE MARKET MANAGEMENT” submitted towards completion of

project in 7th Semester of B. Tech. (Computer Engineering) is an authentic record

of our original work carried out under the guidance of “Prof. Nirali Borad”.

We have not submitted the matter embodied in this project for the award of any

other degree.

Semester: 7th

Place: Rajkot

Signature:

Prachi Ardeshna (201002002)

Moxa Sodha(201002025)

7 | P a g e

ATMIYA UNIVERSITY

 RAJKOT

CERTIFICATE

Date:

This is to certify that the “E-VEGETABLE MARKET MANAGEMENT” has

been carried out by Prachi Ardeshna under my guidance in fulfillment of the

subject Mini Project in COMPUTER ENGINEERING (7th Semester) of Atmiya

University, Rajkot during the academic year 2021.

Prof. Nirali Borad Prof. Tosal M. Bhalodia

(Project Guide) (Head of the Department)

8 | P a g e

ATMIYA UNIVERSITY

RAJKOT

CERTIFICATE

Date:

This is to certify that the “E-VEGETABLE MARKET MANAGEMENT” has

been carried out by Moxa Sodha under my guidance in fulfillment of the subject

Mini Project in COMPUTER ENGINEERING (7th Semester) of Atmiya

University, Rajkot during the academic year 2021.

GUIDE: Prof. Tosal M. Bhalodia

Prof. Nirali Borad (Head of the Department)

9 | P a g e

ACKNOWLEDGEMENT

We have taken many efforts in this project. However, it would not have been possible without

the kind support and help of many individuals and organizations. We would like to extend our

sincere thanks to all of them.

We are highly indebted to Prof. Nirali Borad for their guidance and constant supervision as

well as for providing necessary information regarding the Mini Project titled “E-VEGETABLE

MARKET MANAGEMENT”. We would like to express our gratitude towards staff members

of Computer Engineering Department, Atmiya University for their kind co- operation and

encouragement which helped us in completion of this project.

We even thank and appreciate to our colleague in developing the project and people who have

willingly helped us out with their abilities.

 Prachi Ardeshna (201002002)

Moxa Sodha(201002025)

X | P a g e

ABSTRACT

The paper proposes to organize the vegetable market and bring about a change in the way things

work. Vegetable, one of the products that is highly dependent on the rural section of the country

has developed into such an efficient system that ensures that every household in the country gets

fresh vegetable on-time with all due remunerate onto the producers. The paper proposes on

interface for the consumers/buyers of vegetables. The main challenge for the system is to intervene

starting with the current set up and incrementally bring the benefit of improved efficiency.

XI | P a g e

INDEX

Sr.

No.
TITLES

Page

No.

 Acknowledgement I

 Abstract II

 Index III

 List of Figures VI

1. Introduction 1

 1.1 Introduction 1

 1.2 Purpose 1

 1.3 Scope 1

 1.4 Feasibility study 1

 1.4.1 Operational Feasibility 1

 1.4.2 Technical Feasibility 2

 1.4.3 Economical Feasibility 2

2. Software Requirements Specification 3

 2.1 Hardware Requirement 3

 2.2 Software Requirement 3

3. Design &Planning 4

 3.1 Software Development Life Cycle Model 4

 3.1.1 Waterfall Model 4

 3.2 DFD(data flow diagram) 4

 3.3 ER-Diagram 6

 3.4 Class Diagram 7

 3.5 Input / Output Interface 8

4. Implementation Details 14

XII | P a g e

 4.1 Back End 14

 4.1.1 JAVA 14

 4.1.2 MYSQL 14

5 Testing and Implementation 15

 5.1 Unit Testing 15

 5.1.1 Introduction 15

 5.1.2 Benefits 15

 5.2 Integration Testing 16

 5.2.1 Purpose 16

 5.2.1.1 Top-down And Bottom-up 16

 5.3 Software Verification And Validation 17

 5.3.1 Introduction 17

 5.3.2 Classification Of Methods 17

 5.4 System Testing 17

6. Limitations 18

7. Conclusion 19

8. References 20

XIII | P a g e

LIST OF FIGURES

Figure name Page no.

Data flow diagram 4

- DFD level 0 4

- DFD level 1 5

- DFD level 2 5

Use case diagram 6

ER-Diagram 7

Class diagram 8

INTRODUCTION

1.1 Introduction

The paper proposes to organize the vegetable market and bring about a change in the way things

work. Vegetable, one of the products that is highly dependent on the rural section of the country

has developed into such an efficient system that ensures that every household in the country gets

fresh vegetable on-time with all due remuneration to the producers. The paper proposes on

interface for the consumers/buyers of vegetables. The main challenge for the system is to

intervene starting with the current set up and incrementally bring the benefit of improved

efficiency.

1.2 Purpose

This document is meant to delineate the features of E-Vegetable market Management, so as to

serve as a guide to the developers on one hand and a software validation document for the

prospective client on the other. The E-Vegetable Market Management for Vegetable item shop

Android application is intended to provide complete solutions for vendors as well as customers

through a single get way using the internet. It will enable vendors to setup online selling,

customer to browse through each registered vendor and purchase them online without having to

visit the shop physically. The administration module will enable a system administrator to

approve and reject requests for new vendors and maintain various lists of vegetable.

1.3 Scope

This system allows the customers to get their required product and can communicate directly to

vendors and vice-e-versa.

1.4 Feasibility study

A feasibility study is a high-level capsule version of the entire System analysis and Design

Process. The study begins by classifying the problem definition. Feasibility is to determine if it’s

worth doing. Once an acceptance problem definition has been generated, the analyst develops a

logical model of the system. A search for alternatives is analyzed carefully. There are 3 parts in

feasibility study.

1) Operational Feasibility

2) Technical Feasibility

3) Economical Feasibility

 Operational Feasibility:

 The System is to be developed for vendor and customers who wants to use it. We want

our system user friendly and easy to use.

 The administrator also may be non-technical, so the user interface will be designed in

such a way that it gets comfortable for non-technical person to operate easily.

 Economic Feasibility:

 Economic feasibility is a measure of cost effectiveness of a project or solution.

 For declaring that the system is economically feasible, the benefits from the project

should exceed or at least to the equal to the cost of development.

 Technical Feasibility:

 This involves questions such as whether the technology needed for the system exists,

how difficult it will be to build, and whether the firm has enough experience using that

technology.

 The assessment is based on outline design of system requirements in terms of input,

processes, output, fields, programs and procedures. This can be qualified in terms of

volume of data, trends, frequency of updating inorder to give an introduction to the

technical system.

CHAPTER 2

SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

 Minimum 2.27 Ghz Processor

 RAM: 4GB minimum

 100GB free space in Hard Disk storage

2.2 Software Requirements

 Device must have browser

 Android studio

 Visual Studio

 Eclipse IDE

CHAPTER 3

DESIGNING & PLANNING

3.1 Software Development Life Cycle Model

3.1.1 Waterfall model

The waterfall model was selected as the SDLC model due to the following reasons:

Requirements were very well documented, clear and fixed. Technology was adequately

understood. Simple and easy to understand and use. There were no ambiguous requirements.

Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a

review process. Clearly defined stages. Well understood milestones easy to arrange tasks.

3.2 Data Flow Diagram

3.3 Use Case Diagram

3.4 ER-Diagram

3.5 Class Diagram

3.6 Input / Output Interface

CHAPTER 4

IMPLEMENTATION DETALIS

4.1 Back end

4.1.1 JAVA

Java is high level, object-oriented programming language that is designed to have as few

implementation dependencies as possible. It is a general-purpose programming language

intended to let programmers write once, run anywhere. Java applications are typically

compiled to bytecode that can run on any java virtual machine (JVM) regardless of the

underlying computer architecture. The java runtime provide dynamic capabilities that are not

typically available in traditional compiled language.

4.1.2 MYSQL

MySQL is an open source relational database management system (RDBMS) based on

Structured Query Language (SQL). It is one part of the very popular LAMP platform

consisting of Linux, Apache, My SQL, and PHP. Currently My SQL is owned by Oracle. My

SQL database is available on most important OS platforms. It runs on BSD Unix, Linux,

Windows, or Mac OS. Wikipedia and YouTube use My SQL. These sites manage millions of

queries each day. My SQL comes in two versions: My SQL server system and My SQL

embedded system.

CHAPTER 5

TESTING AND IMPLEMENTATION

The term implementation has different meanings ranging from the conversation of a basic

application to a complete replacement of a computer system. The procedures however, are

virtually the same. Implementation includes all those activities that take place to convert from

old system to new. The new system may be totally new replacing an existing manual or

automated system or it may be major modification to an existing system. The method of

implementation and time scale to be adopted is found out initially. Proper implementation is

essential to provide a reliable system to meet organization requirement.

5.1 Unit testing

5.1.1 Introduction

In computer programming, unit testing is a software testing method by which individual units

of source code, sets of one or more computer program modules together with associated

control data, usage procedures, and operating procedures, are tested to determine whether

they are fit for use. Intuitively, one can view a unit as the smallest testable part of an

application. In procedural programming, a unit could be an entire module, but it is more

commonly an individual function or procedure. In object-oriented programming, a unit is

often an entire interface, such as a class, but could be an individual method.

5.1.2 Benefits

The goal of unit testing is to isolate each part of the program and show that the individual

parts are correct. A unit test provides a strict, written contract that the piece of code must

satisfy. As a result, it affords several benefits.

1) Find problems early : Unit testing finds problems early in the development cycle. In test-

driven development (TDD), which is frequently used in both extreme programming and

scrum, unit tests are created before the code itself is written. When the tests pass, that code is

considered complete. The same unit tests are run against that function frequently as the larger

code base is developed either as the code is changed or via an automated process with the

build.

2) Facilitates Change : Unit testing allows the programmer to refactor code or upgrade

system libraries at a later date, and make sure the module still works correctly (e.g., in

regression testing). The procedure is to write test cases for all functions and methods so that

whenever a change causes a fault, it can be quickly identified.

3) Simplifies Integration : Unit testing may reduce uncertainty in the units themselves and

can be used in a bottom-up testing style approach. By testing the parts of a program first and

then testing the sum of its parts, integration testing becomes much easier.

4) Documentation : Unit testing provides a sort of living documentation of the system.

Developers looking to learn what functionality is provided by a unit, and how to use it, can

look at the unit tests to gain a basic understanding of the unit's interface (API).Unit test cases

embody characteristics that are critical to the success of the unit.

5.2 INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in

software testing in which individual software modules are combined and tested as a group. It

occurs after unit testing and before validation testing. Integration testing takes as its input

modules that have been unit tested, groups them in larger aggregates, applies tests defined in

an integration test plan to those aggregates, and delivers as its output the integrated system

ready for system testing.

5.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and reliability

requirements placed on major design items. These "design items", i.e., assemblages (or

groups of units), are exercised through their interfaces using black-box testing, success and

error cases being simulated via appropriate parameter and data inputs. Simulated usage of

shared data areas and inter-process communication is tested and individual subsystems are

exercised through their input interface. Test cases are constructed to test whether all the

components within assemblages interact correctly, for example across procedure calls or

process activations, and this is done after testing individual modules, i.e., unit testing. The

overall idea is a "building block" approach, in which verified assemblages are added to a

verified base which is then used to support the integration testing of further assemblages.

Software integration testing is performed according to the software development life cycle

(SDLC) after module and functional tests.

5.2.1.1 Top-down And Bottom-up

Bottom-up testing is an approach to integrated testing where the lowest level components are

tested first, then used to facilitate the testing of higher level components. The process is

repeated until the component at the top of the hierarchy is tested.All the bottom or low-level

modules, procedures or functions are integrated and then tested. After the integration testing

of lower level integrated modules, the next level of modules will be formed and can be used

for integration testing. This approach is helpful only when all or most of the modules of the

same development level are ready. This method also helps to determine the levels of software

developed and makes it easier to report testing progress in the form of a percentage.

5.3 SOFTWARE VERIFICATION AND VALIDATION

5.3.1 Introduction

In software project management, software testing, and software engineering, verification and

validation (V&V) is the process of checking that a software system meets specifications and

that it fulfills its intended purpose. It may also be referred to as software quality control. It is

normally the responsibility of software testers as part of the software development lifecycle.

Validation checks that the product design satisfies or fits the intended use (high-level

checking), i.e., the software meets the user requirements. This is done through dynamic

testing and other forms of review. Verification and validation are not the same thing,

although they are often confused. Boehm succinctly expressed the difference between

5.3.2 Classification of Methods

In mission-critical software systems, where flawless performance is absolutely necessary,

formal methods may be used to ensure the correct operation of a system. However, often for

non-mission-critical software systems, formal methods prove to be very costly and an

alternative method of software V&V must be sought out. In such cases, syntactic methods are

often used.

5.3.3 Test Cases

A test case is a tool used in the process. Test cases may be prepared for software verification

and software validation to determine if the product was built according to the requirements of

the user. Other methods, such as reviews, may be used early in the life cycle to provide for

software validation.

5.4 System Testing

System testing of software or hardware is testing conducted on a complete, integrated system

to evaluate the system's compliance with its specified requirements. System testing falls

within the scope of black-box testing, and as such, should require no knowledge of the inner

design of the code or logic. System testing is a more limited type of testing; it seeks to detect

defects both within the "inter-assemblages" and also within the system as a whole.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing

tests not only the design, but also the behavior and even the believed expectations of the

customer. It is also intended to test up to and beyond the bounds defined in the

software/hardware requirements specification(s).

CHAPTER 6

LIMITATIONS

 Online payment not available

 User can buy the vegetable which are available in stock

 User have to login with only mobile number

CHAPTER 7

CONCLUSION

With regard to the requirements specified, we completed the project. This system satisfies the

users and it is a user– friendly application which is easy to operate. The hypothesis was that

E-veg would last the longest in all of the devices tested. My results do support my hypothesis.

The proposed system in which we took the idea that will make every farmer reach the homes

in there nearby locality or cities by the medium of this web application. In this we have used

some simple database. Finally, we achieve the farmer profit to directly connected to the end

user. There are some trends that indicate the transformation of agricultural information

systems in India is occurring. This application provides availability of rates in various vegs

help to give good rates to farmers. Transportation losses reduced after e-agriculture

marketing. This is important for the transformation of agriculture in India

CHAPTER 8

REFERENCE

 https://www.w3schools.com/

 https://www.geekforgeeks.org

 https://javatpoit.com

 https://developer.android.com

	E-VEGETABLE MARKET MANAGEMENT
	ATMIYA UNIVERSITY
	RAJKOT
	ATMIYA UNIVERSITY (1)
	RAJKOT (1)

