Contents

Title	Content	Pg. No.
	Declaration by the Candidate	Ι
	Certificate of Supervisor	II
	Thesis Approval Form	III
	Declaration by Research Scholar -Submission of Thesis	IV
	Acknowledgement	V
	Contents	VII
	List of Figures	XI
	List of Tables	XIII
	List of Abbreviations	XIV
	Abstract	XV
Chapter : 1	Introduction	1
	1.1 Introduction	1
	1.2 Concepts of Convolutional Neural Network	4
	1.3 Components of CNN	4
	1.3.1 Convolutional Layer	5
	1.3.1.1 Kernel	5
	1.3.1.2 Convolution Operation	5
	1.3.1.3 Padding	6
	1.3.1.4 Stride	7
	1.3.2 Pooling layer	7
	1.3.3 Activation Function	8
	1.3.3.1 Sigmoid	9
	1.3.3.2 Tanh	9
	1.3.3.3 ReLu	10
	1.3.3.4 Leaky ReLu	10
	1.3.4 Fully Connected (FC) Layer	10
	1.3.5 Loss Function	11
	1.3.5.1 Softmax Loss or Cross Entropy Loss Function	11
	1.3.5.2 Mean Squared Error	11
	1.4 Neural Network	11
	1.4.1 Basic Structure of ANNs	12

	1.5 Optimizer Selection	16
	1.5.1 Batch Gradient Descent	17
	1.5.2 Stochastic Gradient Descent (SGD)	17
	1.5.3 Mini Batch Gradient Descent	17
	1.5.4 Momentum	17
	1.5.5 Adaptive Moment Estimation (Adam)	18
	1.6 Semantic Segmentation	18
	1.6.1 Fully Convolutional Network (FCN)	18
	1.6.2 SegNet	19
	1.6.3 U-Net	19
Chapter: 2	Literature Review	21
	2.1 Introduction	21
	2.2 Road Extraction Methods	21
	2.2.1 Knowledge-Based Method	22
	2.2.2 Mathematical Morphological Based	23
	2.2.3 Active Contour Model	24
	2.2.4 Classification-Based Method	27
	2.2.4.1 Based on Handcrafted Features	27
	2.2.4.2 Based on Deep Learning	30
	2.3 Image sources	36
	2.4 Inferences from Literature Survey	37
	2.5 Problem Statement	37
	2.6 Contribution	38
	2.7 Objective of the Research	40
Chapter : 3	Modified U-Net	41
	3.1 Introduction	41
	3.2 Proposed Modified U-Net based Road Network Extraction	
	System	41
	3.2.1 Block diagram of the Modified U-Net	42
	3.2.2 Architecture of U-Net	43
	3.2.3 Modified U-Net Architecture	44
	3.2.4 SegNet Architecture	47
	3.3 Experimental Setup	49
	3.3.1 Dataset	49

	3.3.2 Data Augmentation	50
	3.3.3 Performance Metrics	50
	3.3.4 Road Segmentation Network Training	51
	3.4 Results and Discussion	53
	3.4.1 Result Analysis based on Number of Training Samples	
	and Training Time	53
	3.4.2 Analysis of Training Time and Testing Time of	
	modified U-Net	57
	3.5 Applicability Analysis of Modified U-Net	59
Chapter : 4	Gradient Descent Sea Lion Optimization	63
	4.1 Introduction	63
	4.1.1 Proposed Deep Learning Enabled Approach for Road	
	Segmentation and Edge-Centerline Extraction	63
	4.1.2 Acquisition of Input	64
	4.1.3 Pre-processing using T2FCS Filter	65
	4.1.4 Road Segmentation using GDSLO-based U-Net	65
	4.2 GDSLO Pseudo Code	69
	4.3 Road Edge and Centerline Detection using FCN	71
	4.4 Results and Discussion	72
	4.4.1 Experimental Setup	72
	4.4.2 Dataset Description	72
	4.4.3 Performance Metrics	73
	4.5 Comparative analysis of road network extraction systems	74
	4.5.1 Analysis Based on Road Surface Extraction	74
	4.5.2 Analysis Based on Road Centreline Detection	78
	4.5.3 Analysis Based on Testing Time and Training Time	80
	4.6 GDSLO Results and Comparative Analysis	82
	4.6.1 Experimental Outcomes of GDSLO	83
Chapter : 5	Conclusion and Future Scope	87
	5.1 Conclusion	87
	5.2 Limitations	88
	5.3 Recommendations for Further Research	89
	Bibliography	91
	Publications and Participation	99

Appendix A	Plagiarism Report	101
Appendix B	Publication	102

List of Figures

Figure No.	Name of the Figure	Pg. No.
Figure 1.1	Convolution Neural Network	4
Figure 1.2	Example of a 2x2 Kernel	5
Figure 1.3	Understanding of Convolution Operation	6
Figure 1.4	Concept of the Pooling Layer (tutorialpoint)	8
Figure 1.5	Activation Functions (Anirudha Ghosh, January, 2020)	9
Figure 1.6	The Architecture of Fully Connected Layers(tutorialpoint)	10
Figure 1.7	Human's Brain Working (tutorialpoint)	12
Figure 1.8	Simple ANN (Anirudha Ghosh, January,2020)	12
Figure 1.9	Neuron Model (tutorialpoint)	13
Figure 1.10	Back propagation in ANN(Anirudha Ghosh, January,2020)	14
Figure 1.11	End-to-End Model of FCN (E. Shelhamer, 2017)	19
Figure 1.12	End-to-end model of SegNet (A. Krizhevsky, 2012)	19
Figure 1.13	End-to-end model of U-Net (Ronneberger O, 2015)	20
Figure 2.1	Road Network Extraction Methods	22
Figure 2.2	Road Network Extraction (Jing Shen, 2008)	23
Figure 2.3	Road detection by (Gang Xu, 2009)	24
Figure 2.4	Road Extraction by (ANIL P.N., 2010)	25
Figure 2.5	Song and Daniel Method (CIVCO, 2004)	28
Figure 2.6	Road area extraction using (Xiang, 2017)	31
Figure 2.7	Road Network Centerline Extraction (Xiang, 2017)	31
Figure 3.1	Proposed Road Network Extraction System Block Diagram	42
Figure 3.2	Architecture of U-Net	44
Figure 3.3	Architecture of Modified U-Net	47
Figure 3.4	Network Structure of SegNet	48
Figure 3.5	Remote Sensing Images	49
Figure 3.6	Ground Truth Images of figure 3.5	49
Figure 3.7	Modified U-Net Training Algorithm	52
Figure 3.8	Training Time of Various Dataset Samples Splitting	54
Figure 3.9	Comparison with other State of Art Methods	58
Figure 3.10	Visual Comparison of Segmentation Methods	61
Figure 4.1	Schematic View of The Established Deep Learning Enabled	64

	Method for Road Segmentation and Edge-Midway Extraction	
Figure 4.2	Road Surface Extraction Results	76
Figure 4.3	Road Edge Detection Result	78
Figure 4.4	Road Centreline Detection Results	80
Figure 4.5	Testing and Training Time Comparative Result of GDSLO	81
Figure 4.6	Experimental Outcomes of Surface Detection using GDSLO	84
	Method	
Figure 4.7	Experimental Outcomes of Edge Detection using GDSLO	85
	Method	
Figure 4.8	Experimental Outcomes of Centerline Detection using GDSLO	86
	Method	

List of Tables

Table No.	Name of Table	Pg. No.
Table 2.1	Comparison of Various Traditional Methods	27
Table 2.2	Comparison of Various Machine Learning Based Methods	30
Table 2.3	Summary of Road Network Extraction System Based on Deep	34
	Learning	
Table 2.4	Performance Comparison of Various Deep learning Based	36
	Methods.	
Table 3.1	Training -Testing Split	50
Table 3.2	Training Time of Various Dataset Samples Splitting	53
Table 3.3	Training Phase Parameters Comparison of epoch30	55
Table 3.4	Testing Phase Parameters Comparison when epoch30	56
Table 3.5	Approximate the Same Training Time for Different Epoch	57
Table 3.6	Evaluation of Segmentation Result with Well Known Methods	59
Table 4.1	Pseudo Code of Proposed Method GDSLO Algorithm	70
Table 4.2	Experimental Parameters	72
Table 4.3	Comparative Analysis of Well Known Methods with GDSLO	83
Table 4.4	Comparative Analysis of GDSLO Method with Existing Methods	83
	Based on Testing Time and Training Time	

List of Abbrivations

Adam	Adaptive moment estimation
FCN	Fully Connected Network
FC	Fully Connected
RMSProp	Root Mean Square Propagation
HR	High Resolution
GPU	Graphics Processing Unit
CNN	Convolutional Neural Network
RS	Remote Sensing
ANN	Artificial Neural Network
ReLu	Rectifier Linear Unit
SVM	Support Vector Machine
FFNN	Feed Forward Neural Network
GMLC	Gaussian Maximum Probability
GDSLO	Gradient Descent Seal Lion Optimization
LS-SVM	Least Square Support Vector Machine
RBNet	Road Boundary Detection Network
ASPN	Advertisial Spatial Pyramid Network
SGD	Stochastic Gradient Descent
SLO	Seal Lion Optimization