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Abstract. Differential expression study between tumor and non-tumor cells aids
lung cancer diagnostic classifications and prognostic prediction at various stages.
Support vector machine (SVM) learning is used to categorize the morphology of
lung cancer. Logistic regression, random forest, and group lasso-based models
are used to model dichotomous outcome variables. The purpose is to take groups
of observations and design boundaries to forecast which group future observa-
tions belong to base measurements. The performance of these selected regression
and classification models using lung cancer prognostic indicators is evaluated
in this article. The presented results might guide for further regularizations in
classification techniques using known lung carcinoma marker genes.
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1 Introduction

Among all malignancies, lung cancer caused the most considerable loss of pay, total-
ing $21.3 billion in year 2018-19 [1]. However, the specific environmental and genetic
etiology of a person’s lung cancer is unknown, and it can be described as a tumor form-
ing in the lung when altered cells escape the immune system and grow out of control.
Despite the fact that many lung cancer research findings have been published, scientific
advancement in lung cancer research is still limited. Lung cancer diagnostic classifi-
cations and prognosis prediction at various stages are aided by differential expression
analysis between tumor and non-tumor cells. Attempts have been undertaken to find
genes linked to lung cancer symptoms. Lung cancer morphology categorization has been
performed using support vector machine learning techniques [2]. Alanni et al. devised a
deep gene selection technique for cancer classification from microarray datasets [3]. The
results of their experiments revealed an average sensitivity of 95.22% and a specificity
of 77.39%. Several machine learning methods have also been utilized to identify 13
top genes in lung adenocarcinoma and lung squamous cell cancer [4]. To learn cancer
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type classification based on TCGA data, Mohammed et al. employed the least absolute
shrinkage and selection operator (LASSO) as a feature selection approach [5]. In addi-
tion to cancer classification and biomarker identification, overlapping feature selection
strategies have been used [6]. Squamous cell lung cancer (LUSC) has been associated
to four genes CCNA2 (890), AURKA (6790), AURKB (9212), and FEN1 (2237) [7],
while lung adenocarcinoma (LUAD) has been linked to four genes (CD44 (960), CCND3
(896), NCALD (83988), MACF1 (23499), and RAMP2-AS1 (10266). In a comprehen-
sive genomic study of squamous cell lung tumors [9], one gene, TP53 (7157), was found
to be altered in virtually all cases. To model dichotomous outcome variables, logis-
tic regression, random forest, support vector machines (SVM), and group lasso-based
models are utilized [10, 11]. The purpose is to take groups of observations and design
boundaries to forecast which group future observations belong to base on their measure-
ments. The performance of these selected regression and classification models using
lung cancer prognostic indicators is evaluated in this article.

2 Dataset and Methodology

We chose to test performance of each of the 4 techniques on 3 different datasets with
lung LUAD (517 tumor, 59 normal) [12], LUSC (501 tumor, 51 normal) [9] and non-
small cell lung carcinomas (NSCLC) (91 tumor, 65 normal subjects) [13]. Libraries
randomForest, caret was used for random forest application, library kernlab and 1071
for SVM, and glmnet for regression. Functions svm(kernel = “radial”, cost = 10, gamma
= 1), predict(), glm(), wald.test(), and glmnet() were utilized for performing k-fold cross-
validation to find optimal lambda value that minimizes test mean squared error (MSE)
[14-16]. Cross validations were performed with 70:30 training to testing splits. Response
value was considered 0/living and 1/death status. Sum of squares total (SST), sum of
squares error (SSE) and R-squared value on a response variable (y) were calculated as
follows:

sst < - sum((y-mean(y))™2).

sse < - sum((y_predicted-y)™2).

rsq < - 1 - sse/sst.

All the code for accessing data and methodology can be found at authors GitHub
account: https://github.com/spawar2/Regression-Lung-Carcinoma/tree/main.

3 Results

3.1 Prediction Performance of Random Forest

Test classification accuracy of 55% was obtained on selected 10 genes expression values
with an 30-78 range for 95% CI. The P value was seen insignificant with sensitivity and
specificity of 14 and 81% respectively. The 10 genes were not found to exclusively clas-
sify the survival response status. We also tested this classification approach on different
combinations of these 10 marker genes, and results were consistent. Table 1 provides
details of test and training metrics of random forest.
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Table 1. Test and training metrics of random forest.

Train: Type of random forest: Test: Type of random forest:
regression classification
Number of trees: 500 Number of trees: 500
No. of variables tried at each split: | No. of variables tried at each split:
i/[ean of squared residuals: 3OOB estimate of error rate:
0.2553676 40.62%
% Var explained: —6.72

Accuracy 1 0.5556

95% CI (0.944, 1) (0.3076, 0.7847)

No information rate | 0.6094 0.6111

P-value [Acc > NIR] | 1.709e—14 0.7680

Kappa 1 —0.0435

Sensitivity 1 0.14286

Specificity 1 0.81818

Pos pred value 1 0.33333

Neg pred value 1 0.60000

Prevalence 0.3906 0.38889

Detection rate 0.3906 0.05556

Detection prevalence | 0.3906 0.16667

Balanced accuracy 1 0.48052

‘Positive’ class 0 0

3.2 Prediction Performance of SVM

Testing SVM with 10 marker gene expression on a survival response variable predicted
85% subjects living/0 correctly (n = 20), and 24% subjects dead/1 correctly (n = 62)
(Table 2). The test group was randomly selected with Fig. 1 showing dispersion of 2
groups for genes 890 and 6790. We found similar dispersion patterns for other genes and
throughout all the 3 separate datasets. SVM poorly classifies survival response status

with known marker

genes.

Table 2. SVM classification of test data.
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Fig. 1. Dispersion of survival and dead subjects for genes 890 and 6790.

3.3 Prediction Performance of Logistic Regression and LASSO

Testing prediction probabilities from LASSO ranged from 0.3-0.7 (Table 3). A weighted
distance between the unrestricted estimate (Wald test) P value was found to be insignif-
icant. The Chi-squared value of 0.89 with a P value > 0.05 also states insignificant
prediction probabilities. The least squares regression tries to find coefficient estimates
that minimize the sum of squared residuals (RSS). It can be presented with function:
RSS = X(y; — $)2, yi: is actual response value for the i observation and §;: is the
predicted response value based on the multiple linear regression model. Figure 2 depicts
calculates the binomial deviance (binomial log-likelihood) in the test dataset. The test
data R square value of —6.70 was obtained stating the selected model does not follow
the trend of the data, therefore leading to a worse fit than the horizontal line.

1 10 10 10 10 10 10 10 10 8 8 8 7 6 6 5 2

Binomial Deviance

Log(h)

Fig. 2. Calculation of binomial deviance (binomial log-likelihood) in the test dataset.

Table 3. Prediction probabilities from LASSO.

Status Predicted probability
0 0.6545150
0 0.6875263

(continued)
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Table 3. (continued)

Status Predicted probability
0 0.5171204
1 0.6935557
1 0.6536800
1 0.7114294
1 0.7818345
1 0.3633772
1 0.8720003
1 0.6644866
1 0.6111339
1 0.6527981

4 Discussion and Future Scope

The biological literature of the selected 10 key genes is enriched by their new roles
associated to lung cancer, which have moved from an indirect to a direct association,
i.e., to become new biomarkers. In many cases, indirect impacts are more important than
direct effects because direct effects can be seen and controlled, whereas indirect effects
are difficult to detect and control. We wanted to test their effects on response variable
using selected regression and classification techniques. We find insignificant correlations
with response variable. these findings are consistent for all the three cancer types. There
can be several reasons of these outcomes. Growing more than one type of lung cancer
is uncommon among all known lung cancer types. As a result, competing risk factor
models can be extremely effective at modeling a variety of lung cancer forms. Further,
confounding factors (age, gender, preexisting conditions, etc.) also significantly affect
regression perditions. The expression data is rarely linearly separable, and prone to noise
and overfitting. Although we did take care of limiting outliers, regression techniques
are oversensitive to nominal outliers. One limitation of this study is multicollinearity,
dimensionality reduction techniques are needed to be implemented to address issue
of multicollinearity apart from above confounding factors. The presented results might
guide for further regularizations in classification techniques using known lung carcinoma
marker genes.
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