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aDepartment of Chemical Sciences, Faculty of Science, Atmiya University, Rajkot, India; bDepartment of 
Biotechnology, Faculty of Science, Atmiya University, Rajkot, India; cIn-Silico Lab, Department of 
Microbiology, School of Science, RK University, Rajkot, India

ABSTRACT
A series of novel quinoline-isoxazole hybrids 6a–o has been synthe-
sized via multistep synthetic approach involving hetero Diels-alder 
reaction strategy. The target compounds were obtained in good yield, 
using low-cost readily available starting materials using simple reac-
tion conditions. The newly synthesized compounds were confirmed 
using 1H NMR,13C NMR, and Mass spectroscopic analysis techniques. 
Further, compounds 6a–o were subjected to in vitro antimicrobial 
screening against various bacterial and fungal strains, such as Bacillus 
subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi, 
Aspergillus niger, and Candida albicans. Among these, compounds 6i, 
6j, and 6 l were found most active having equally potent compared 
to standard drug Ampicillin and Gentamycin. Moreover, in silico stud-
ies of 6a–o with E. coli DNA gyrase through molecular docking and 
MD simulations showed excellent binding properties of these deriva-
tives with protein site.

GRAPHICAL ABSTRACT

Introduction

The majority of hospital-acquired infections are bacterial, posing a serious global health 
threat, increasing mortality, and straining healthcare systems worldwide.[1] One of the 
current threats to therapeutics is based on combating the development of anti-microbial 
resistance (AMR) to conventional antibiotics.[2] This bacterial resistance is such a 
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stubborn issue, that traditional medicine has failed to address the management of 
infectious diseases globally.[3] AMR is thought to have contributed to 4.95 million 
fatalities around the world and in expansion to straightforwardly causing 1.27 million 
passings.[3] The WHO alerts us to the possibility of a post-antibiotic period in the 
twenty-first century, in which common ailments and small mishaps could turn deadly.[4] 
Therefore, an alarming need to address the multidrug resistance (MDR)[5] in the bac-
terial strains is generated and long-term, concrete therapeutic options against potent 
gram-positive and gram-negative pathogens are to be created via novel and effective 
drugs.[6,7] The critical aspect is to design the mode of action of antibiotics in such a 
way that they cannot be salvaged via their metabolic and defense pathways.[8]

There are a large number of readily available medications that contain quinoline 
heterocycle in their structures are a good illustration of how crucial quinoline and its 
derivatives are in creating innovative drug moieties for therapeutic uses.[9] Quinoline 
is regarded as a significant biological active moiety with a wide range of biological 
properties, including anti-bacterial,[10] anti-oxidant,[10] anti-inflammatory,[11] 
anti-arrhythmic,[12] anti-convulsant,[13] anti-depressant,[14] anti-psychotic,[14] 
anti-hypertensive,[15,16] anti-tuberculosis,[17] anti-fungal and anti-viral[18] activities. 
Quinoline and its derivatives are part of several medical compounds, which include 
moxifloxacin (1, antibacterial), grepafloxacin (2, antibacterial), enoxacin (3, antibacte-
rial), mefloquine (4, anti-inflammatory), chloroquine (5, antimalarial), ciprofloxacin 
(6, antituberculosis), and nedocromil (7, anticonvulsant) (Fig. 1).

On the other hand, it is widely known that isoxazole is linked to a variety of bio-
logical activities as a result of the variety of non-bonding interactions it can engage 
in. Numerous natural products[19] and functional materials contain the biologically 
active isoxazole,[20] which has a wide range of biological applications.[21] In biological 
systems, the isoxazole entities could easily connect with several enzymes and receptors, 
as evidenced by the wide range of biological functions they possess[22] including 
anti-bacterial,[23] anti-fungal,[24] anti-viral,[25] anti-tubercular,[26] anti-cancer,[27] and 
anti-inflammatory[28] activities. In addition, isoxazole and its derivatives are also found 
in several drug molecules like cloxacillin (8, antibacterial), NVP-AUY922 (9, antican-
cer), valdecoxib (10, anti-inflammatory), sulfamethoxazole (11, antibacterial) and leflu-
namide (12, anti-inflammatory).[21]

In the previous reports bioactive, and selective quinoline-isoxazole hybrids hetero-
cycles were created[29,30] and tested for their in vitro cytotoxic activity against various 
cancer molecular targets, such as tyrosine kinase EGFR inhibition (13),[31] breast cancer 
(14, MCF-7),[32] melanoma murine (15)[33] (Fig. 1). Keeping this in mind and to con-
tinue our search for new antimicrobial agents,[34,35] we have designed and developed 
new quinoline-containing isoxazole derivatives (6a–o) and anticipated that these new 
hybrid derivatives may demonstrate potent activity.

Result and discussion

Chemistry

The synthetic route of quinoline containing isoxazole hybrid molecules (6a–o) is depicted 
in Scheme 1. The synthesis commenced from acetanilide (1) which was converted into 
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the necessary intermediate 2-chloroquinoline-3-carbaldehyde (2) by reacting it with 
Vilsmeier-Haack reagent made from DMF and POCl3 at 80 °C by the procedure outlined 
in the literature.[36] The required intermediate quinoline aldoxime (3) was produced from 
intermediate 2 by reacting it with hydroxylamine hydrochloride, in the presence of 

Figure 1.  Structures of marketed drugs and active compounds having quinoline and isoxazole 
moieties.
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Na2CO3, at room temperature by following the procedure from the literature.[37] To 
produce (Z)-2-chloro-N-hydroxyquinoline-3-carbimidoyl chloride (4), quinoline aldoxime 
(3) was reacted with N-chlorosuccinimide (NCS) in DMF at 0 °C before being allowed 
to attain room temperature.[38] Further, by using the hetero Diels-Alder approach, a 
solution of (Z)-2-chloro-N-hydroxyquinoline-3-carbimidoyl chloride (4) and KHCO3 in 
DMF was treated with propargyl bromide at room temperature to produce intermediate 
(5).[39] At last, compound 5 was treated with NaHCO3 and substituted aniline using 
THF:H2O (1:1) as a solvent at 60 °C to yield the quinoline containing isoxazole deriva-
tives (6a–o).[38] By examining their spectroscopic data, such as 1H-NMR,13C-NMR, and 
mass spectroscopy, the compounds 6a–o were characterized. For instance, the 1H spec-
trum of compound 6a presented that 4-methoxy (OCH3) protons were detected at 
3.64  δppm as a singlet, and aliphatic methyl was detected at 4.52  δppm as a singlet. 
The aromatic region of quinoline ring protons was detected between 8.80 and 7.74 δppm 
and the isoxazole proton appeared as a singlet at 6.89  δppm. Substituted aniline doublet 
peaks were detected between 6.75 and 6.67  δppm. At 5.99  δppm a singlet peak was 
detected of amine (NH). A position of amine singlet peak was confirmed by D2O. A 
representative graphical illustration of 1H NMR is shown in Figure 2.

Biological activity

All the newly synthesized hybrid quinoline derivatives containing substituted isoxazole 
(6a–o) were tested for their potential activity against various gram positive [Bacillus 

Scheme 1.  Synthesis of the quinoline containing isoxazole derivatives. Reaction condition: (a) DMF, 
POCl3, 80 °C, 24 h; (b) NH2OH.HCl, Na2CO3, MeOH:Water (2:1), rt, 1 h; (c) NCS, DMF, rt, 12 h; (d) Propargyl 
bromide. KHCO3, DMF, rt; (e) R-NH2, NaHCO3, THF:H2O (1:1), 60 °C, 4 h.
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subtilis (ATCC 6051 and Staphylococcus aureus (ATCC 23235)], gram negative 
[Escherichia coli (ATCC 25922) and Salmonella typhi (ATCC 19430)] and fungal 
strains [Aspergillus niger (ATCC 16888) and Candida albicans (ATCC 10231)]. The 
inhibition zone (mm) was tested against ampicillin and gentamycin as a positive 
control for antibacterial activity and nystatin as a positive control for antifungal 
activity.

As shown in Figures 3 and 4, the antimicrobial evaluation revealed that these com-
pounds exhibited significant bioactivity against most of the tested stains with an 
inhibition zone ranging from 5 to 24 mm.

Structure–activity relationship

Compound 6a having methoxy substitution on the para position showed moderate 
to high antibacterial activity against gram-negative pathogens viz. Escherichia coli 
(23.6 ± 1.2 mm) and Salmonella typhi (25.9 ± 0.63 mm), while standard Gentamicin 
showed 20.8 ± 0.68 mm and 17.8 ± 0.33 mm against the respective pathogens. The 
phenyl ring attachment in compound 6b (20.4 ± 0.63 mm) and compound 6c 
(21.8 ± 0.63 mm) having the presence of halogen group (Br) showed a decrease in 
activity against Salmonella typhi, compared to compound 6a. The inclusion of the 
electron donating group (CH3) lies on the para position in compound 6d (24 mm) 
showed good antimicrobial activity. The inclusion of the electron-withdrawing group 
(Cl) on the para position in compound 6e (23 mm) showed good antibacterial 
activity against both gram-negative pathogens. Compound 6f having methoxy sub-
stitution on ortho position showed the least inhibition in antimicrobial activity. A 
β-naphthyl ring system in compound 6g showed moderate anti-bacterial activity 

Figure 2.  Graphical illustration of 1H NMR (black) and 13C NMR (green) data of representative com-
pound 6a.
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against gram-negative pathogens and also increased antifungal activity (20.5 mm). 
In compound 6h and 6i both have electron withdrawing groups fluro and chloro, 
respectively on the para and meta position. Out of which derivative 6h showed 
good antibacterial activity against gram-positive pathogens having a zone of inhibi-
tion against S. aureus of 25.4 ± 0.58 mm and 19.5 ± 0.58 mm against B. subtilis. While 
derivative 6i showed an increase in both anti-bacterial and anti-fungal activity. 
Compound 6j having α-naphthyl as a substitution exhibited excellent efficacy against 
all the pathogens. In derivative 6k having two methyl substitutions lies on the ortho 
and para position which showed moderate activity against fungal species Candida 
albicans with a zone of inhibition of 22.4 ± 0.58 mm. Compound 6l also had two 
methyl substitutions on the ortho and ortho (2,6) position which exhibited very 
promising efficacy against all the pathogens, having a zone of inhibition (26 mm), 
quite greater than that of standards. Compound 6m having the presence of two 
methyl substitutions on the ortho and meta position displayed the least antifungal 
activity but showed moderate activity against Salmonella typhi gram-negative patho-
gen with (18.3 ± 2.1 mm) zone. Compounds 6n and 6o having methyl substitutions 
on the ortho, ortho, and meta, respectively, exhibited moderate activity against 
Salmonella typhi (18.3 ± 0.58 mm and 18.3 ± 1.2 mm), respectively when compared 
with Gentamicin (17.8 ± 0.33 mm). The synthesized set of compounds exhibited 
moderate to higher in-vitro anti-microbial activity and significant activity was noted 
in 6j and 6l.

Figure 3.  Graphical presentation of anti-bacterial activity data of newly synthesized quinoline contain-
ing isoxazole derivatives 6a–o.
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Molecular docking

In silico studies, especially molecular modeling an important technique for the iden-
tification of the putative binding mode of the compounds with the target protein. 
Hence, a molecular docking study using AutoDock Vina was carried out on the crystal 
structure of the crystal structure of the 24 kDa domain of E. coli DNA gyrase as a 
target for docking studies is driven by its biological significance, its potential as a 
drug target, the availability of structural data, and the utility of computational methods 
in drug discovery efforts.[40] After the energy minimization, the generated 
three-dimensional molecular structures were subjected to docking investigations within 
the binding pocket of DNA gyrase The docking study results of synthesized hybrids 
6a–o are summarized in Table 1. As evident, many amino acid residues were found 
in the interaction of ligands including Arg A:20, Glu B:58, Lys B:162, Asp A:17, and 
Arg B:204. Further, all prepared molecules exhibited good binding energy with the 
target varying from −7.0 to −8.3 kJmol−1. Especially compound 6j exhibited the highest 
docking score of −8.3 kJmol−1 having two conventional hydrogen bonds with Asp A:17, 
and Lys B:162.

The docking studies portrayed that for compound 6a isoxazole’s nitrogen atom formed 
H-bonding with Arg A:20, and its –NH formed H-bindings with Glu B:58. While in 
the case of compound 6b H-bonding formed with Lys B:162. In the case of compound 
6c, the halogen atom formed H-bond with Glu B:58. Compound 6d has the same 
symmetrical bonding as compound 6a oxazole’s nitrogen atom, and its –NH formed 
two H-bonding with Arg A:20 and Glu B:58. In compound 6e the nitrogen atom of 

Figure 4.  Graphical presentation of anti-fungal activity data of newly synthesized quinoline contain-
ing isoxazole derivatives 6a–o.
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quinoline and –NH generated two H-bonding, respectively with Lys B:162 and Glu 
B:58. Compound 6f formed two conventional hydrogen bonds with Asp A:17 and Lys 
B:162. Both compounds 6g and 6h showed two H-bonding with Lys B:162 and Glu 
B:58, out of which compound 6g has a good docking score of −7.8 kJ mol−1 as men-
tioned in (Table 1). Compound 6i formed two conventional hydrogen bonds with Asp 
A:17 and Lys B:162. Compound 6j also interacted with two strong H-bonding with 
Asp A:17 and Lys B:162, as displayed in Figure 5, with the highest docking score of 
−8.3 kJ/mol, shown in (Table 1). Compound 6k made a single hydrogen bond with Arg 
A:20. Also, compound 6l made a single hydrogen bond with Lys B:162, with a good 
docking score of −7.9 kJ mol−1, as mentioned in (Table 1). Compound 6m has two 
conventional hydrogen bonds with Arg A:20 and Glu B:58, with a docking score of 
−7.8 kJ mol−1, as mentioned in (Table 1). Further, compounds 6n and 6o formed single 
H-bonding with Arg B:204 and Arg A:20, respectively. The study of reference molecule 

Table 1.  In silico docking results of the newly synthesized quinoline containing isoxazole  
compounds 6a–o and gentamicin with the binding site of DNA gyrase.
Compounds Docking score (kJ mol−1) Interacting residues Number of H-bonds

6a −7.6 Arg A:20, Glu B:58 2
6b −7.0 Lys B:162 1
6c −7.6 Glu B:58 1
6d −7.7 Arg A:20, Glu B:58 2
6e −7.6 Lys B:162, Glu B:58 2
6f −7.2 Asp A:17, Lys B:162 2
6g −7.8 Lys B:162, Glu B:58 2
6h −7.6 Lys B:162, Glu B:58 2
6i −7.7 Asp A:17, Lys B:162 2
6j −8.3 Asp A:17, Lys B:162 2
6k −7.5 Arg A:20 1
6l −7.9 Lys B:162 1
6m −7.8 Arg A:20, Glu B:58 2
6n −7.4 Arg B:204 1
6o −7.6 Arg A:20 1
Gentamicin −6.9 Glu A:174, Arg A:20 2

Figure 5.  Docking pose of compound 6j with 24 kDa domain of E. coli DNA gyrase. (a) Receptor-ligand 
interaction on a 2-D diagram, (b) receptor-ligand interaction on a 3-D diagram.
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gentamicin revealed that it interacted with two strong H-bonding with Arg A:20 and 
Glu A:174 (Fig. 6) with the lowest docking score −6.6 kJ mol−1 shown in (Table 1).

Molecular dynamics simulation analysis

The molecular dynamics technique is used to investigate the stability and conforma-
tional changes of the molecules in the simulated protein.[41] In the current work, the 
24 kDa domain of E. coli DNA gyrase with the most potent compound 6j was chosen 
for molecular dynamics modeling. The stability of the complexes was assessed using 
potential energy throughout a 100-ns simulation time with a 2-ns time interval. This 
study examined the relationships between Root Mean Square Deviation (RMSD) and 
Root Mean Square Fluctuations (RMSF).

Root mean square deviation

RMSD is a measure of how far atoms move from one frame to another. The structural 
conformation of the protein and the stability of the ligand regarding the protein and 
its binding site can be inferred from the monitoring of their RMSDs, whereas the 
stability of the ligand can be revealed from the monitoring of the protein. Changes 
of 1–3 Å are acceptable for small and globular proteins. Compound 6j and protein 
achieved stability with slight fluctuations during the first 12 ns of MD simulation  
(Fig. 7). After that, it stayed linked to the protein for the remainder of the simulation 
session. Furthermore, the difference in RMSD values between compound 6j and protein 

Figure 6.  Docking pose of gentamicin with 24 kDa domain of E. coli DNA gyrase. (a) Receptor-ligand 
interaction on a 2-D diagram, (b) receptor-ligand interaction on a 3-D diagram.
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average value was 1.3 Å, which demonstrates that the 6j-protein complex (Crystal 
structure of the 24 kDa domain of E. coli DNA gyrase, PDB ID: 4DUH) is stable.

Root mean square fluctuations

The root mean square fluctuations (RMSF) show the fluctuations of each protein amino 
acid residue across the simulation time period. Lower RMSF values for compounds 
6j (Fig. 8) in the system imply minor structural reorganizations and conformational 
changes at the binding site residues during the course of the simulation. The study 
indicated that the structure and organization of the protein do not deviate significantly 
from their original conformation after interacting with the compound.

Figure 7.  Root mean square deviation (RMSD) plot of compound 6j-protein complex.

Figure 8.  Root mean square fluctuations (RMSF) plot of compound 6j-protein complex.
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The ligand-protein contacts show the specific residues of the protein that interact 
with the ligand (Fig. 9). The ALA 18 forms several contacts with the ligand, suggesting 
its significant role in ligand binding. Whereas ARG 168 forms hydrogen bonds or ionic 
interactions with the ligand, indicated by the dashed lines connecting the nitrogen atom 
of ARG 168 to the ligand. The GLU 193 also forms an interaction with the ligand, likely 
contributing to the overall binding affinity. The protein-ligand contacts in the bar chart 
represent the interaction frequency of different residues with the ligand over an MDS 
(Fig. 10). The different colors in the bars likely represent different types of interactions, 
such as hydrogen bonds, hydrophobic interactions, or electrostatic interactions. Overall, 
the varying interaction fractions suggest that certain residues like ARG 168 are consis-
tently involved in ligand binding, while others may have more transient interactions.

Experimental

Chemistry

This includes general procedure for the synthesis of compounds 2–6. Experimental 
procedures for the intermediate and spectral data of all compounds are presented in 
supporting information.

Figure 9. I nteraction diagram of compound 6j-protein contacts.
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General procedure for the synthesis of compounds (6a–o)

To a well-stirred mixture of 5-(bromomethyl)-3-(2-chloroquinolin-3-yl)isoxazole  
(5, 0.80 mmol) and different substituted aniline (0.80 mmol) in a H2O:THF (1:1, 12 mL), 
NaHCO3 (0.96 mmol) was added in portions and the mixture was stirred at 60 °C for 
4 h. After completion of the reaction (monitored by TLC), the reaction mixture was 
then poured onto crushed ice. The precipitate thus appeared was collected by filtration 
with suction and washed with water, and dried. The obtained residue was purified to 
give title compounds (6a–o), which are analytically pure.

N-((3-(2-chloroquinolin-3-yl)isoxazol-5-yl)methyl)-4-methoxyaniline (6a)

By using the general synthetic procedure, compound 6a was prepared from compound 
5 (0.20 g, 0.62 mmol) and p-methoxy aniline (0.08 g, 0.62 mmol) in H2O: THF (1:1, 
12 mL), NaHCO3 (0.06 g, 0.74 mmol).

An off-white solid (0.19 g, 94% yield); mp: 90–92 °C. IR (KBr) νmax/cm−1: 3367 (NH), 
2989 (Ar-C-H), 1606 (Ar-CH = CH), 1513 (Aromatic ring), 1328 (C-N), 1237 (C-O), 779 
(C-Cl), 752 (C-OCH3 Mono Substitution) cm−1. 1H NMR (400 MHz, DMSO-d6)  δppm: 
8.80 (s, 1H, Ar-H), 8.16 (d, J = 7.9 Hz, 1H, Ar-H), 8.04 (d, J = 8.4 Hz, 1H, Ar-H), 7.93 (t, 
J = 7.7 Hz, 1H, Ar-H), 7.74 (t, J = 7.5 Hz, 1H, Ar-H), 6.89 (s, 1H, Ar-H), 6.75 (d, J = 8.3 Hz, 
2H, 2 × Ar-H), 6.67 (d, J = 8.6 Hz, 2H, 2 × Ar-H), 5.99 (s, 1H, NH, exchangeable in D2O), 
4.51 (d, J = 6.4 Hz, 2H, CH2), 3.64 (s, 3H, OCH3); 13C NMR (101 MHz, DMSO-d6)  δppm: 
170.97, 159.49, 152.55, 147.56, 147.34, 140.23, 139.32, 131.16, 127.93, 127.59, 127.26, 
126.20, 122.25, 114.50, 114.24, 103.05, 55.24, 40.97; MS m/z (%): 366 (M+); Anal. Calcd. 
C20H16ClN3O2 (365.82): C, 65.67; H, 4.41; N, 11.49%. Found C, 65.71; H, 4.39; N, 11.55%.

Protocol of antimicrobial activity

The antibacterial and anti-fungal activity was checked against the common fungal 
pathogens Aspergillus niger, and Candida albicans, along with the bacterial strains of 

Figure 10. I nteraction graph of protein-6j contacts.
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two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and, two 
gram-negative bacteria (Escherichia coli and Salmonella typhi). The antibacterial and 
antifungal standards Ampicillin (100 µg/ml), Gentamicin (100 µg/ml), and Nystatin 
(100 µg/ml), respectively were used to test the inhibition zone (mm). According to the 
experimental results, all bacterial strains were significantly inhibited by the tested 
compounds, which had an inhibition zone ranging from 15 to 33 mm, and in the case 
of fungal species an inhibition zone ranging from 13 to 32 mm was observed. The 
synthesized compound showed stronger and moderate action compared to reference 
medicines. The tested compound’s antimicrobial activity was determined using a 100 µg/
ml attentiveness of a molecule in the solvent DMSO. Figures 3 and 4 provide a graph-
ical representation of the antimicrobial activity data.[42]

Protocol of molecular docking study

The ChemSketch 2021.2.0 software was used for the generation of ligand structures. 
Furthermore, the docking studies were carried out to find the interacting residues 
of all compounds AutoDock Vina 1.1.2 was used and during the docking study the 
energy minimization of every molecule was performed using Avogadro-1.2.0.[43] The 
crystal structure of the 24 kDa domain of E. coli DNA gyrase was downloaded from 
the PDB data bank (4DUH). The structural receptor was devoid of all ligands before 
docking by excluding heteroatoms. Kollaman charge, solvation parameters, and polar 
hydrogens were added to the protein to complete its processing. For x, y, and z, 
the appropriate grid box sizes were set to 40, 40, and 40 Å. For each of the variables 
x, y, and z, the grid center was set to 29.712, 2.093, and 23.925. The exhaustiveness 
was 40 and the grid point spacing was 0.375 Å. The most likely binding mechanism 
was determined using the robust molecular graphics viewer Discovery Studio 
Visualizer v21.0.[44]

Protocol of molecular dynamic simulation

The DESMOND module (Schrodinger Inc., USA) was used to conduct a molecular 
dynamics investigation on the best dock protein-ligand combination. The study was 
conducted using the Berendsen thermostat and barostat procedures for 100 ns. The 
system was solved, minimized, and put into a TIP3P orthorhombic box measuring 
10 × 10 × 10 Å. Desmond’s Protein Preparation, Ligand Preparation, and Epik tools con-
firmed the chemical structure’s precision. The minimized explicit solvation complex of 
the ligand-receptor complex was simulated for 100 ns using the NPT ensemble (at 300 K 
and 1.01325 bars). Steepest Descent and Broyden-Fletcher-Goldfarb-Shanno algorithms 
were used to relax the system. The dynamics simulation approach used the Nose-Hoover 
thermostat algorithm and the Martyna-Tobias-Klein barostat algorithm at 300 K tem-
perature and 1 atm pressure and OPLS_2005 force field. To mimic physiological conditions 
counterions and 0.15 M sodium chloride were introduced to neutralize the models. The 
models underwent relaxation before stimulation and trajectories were stored for inspec-
tions at intervals of 100 ps and frames selected from MD trajectories at intervals of 
100 ns post completions of the MDS run. The smooth particle mesh Ewald technique 
was used to manage both long-range and short-range coulombic interactions, with 
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endpoint values of 9.0 Å. MD simulations were run for 100 ns, and trajectory information 
was acquired in the remaining 2.0 ns. It is a classical technique used to efficiently cal-
culate long-range coulombic interactions by splitting the interaction into short-range 
(real space) and long-range (reciprocal space) components. The real-space component 
is computed directly, while the reciprocal space component is computed using Fourier 
transforms. This method is highly accurate for calculating columbic interactions. The 
stability of the docked complexes, 4DUH-6j was assessed by monitoring, root mean 
square deviation (RMSD), and root mean square fluctuations (RMSF).[45]

Conclusion

A novel series of hybrid molecules of quinoline derivatives containing substituted 
isoxazole was synthesized and characterized using NMR, and Mass spectral analysis. 
All the synthesized molecules were evaluated for their antibacterial and antifungal 
properties. Most of the newly synthesized compounds showed excellent antibacterial 
efficacy against both pathogens. Out of all the synthesized compounds, two compounds 
6j and 6l showed promising results in antimicrobial activity with the highest docking 
score of −8.3 and −7.9 kJ/mol. While compounds 6d–e, and 6h–i were able to show 
good or moderate antibacterial and antifungal activity. Furthermore, docking and MD 
analysis revealed that compound 6j may have exhibited antimicrobial potency through 
inhibition of E. coli DNA gyrase.
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