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ON EQUIENERGETIC, HYPERENERGETIC AND
HYPOENERGETIC GRAPHS

SAMIR K. VAIDYA1 AND KALPESH M. POPAT2

Abstract. The eigenvalue of a graph G is the eigenvalue of its adjacency matrix
and the energy E(G) is the sum of absolute values of eigenvalues of graph G. Two
non-isomorphic graphs G1 and G2 of the same order are said to be equienergetic if
E(G1) = E(G2). The graphs whose energy is greater than that of complete graph
are called hyperenergetic and the graphs whose energy is less than that of its order
are called hypoenergetic graphs. The natural question arises: Are there any pairs of
equienergetic graphs which are also hyperenergetic (hypoenergetic)? We have found
an affirmative answer of this question and contribute some new results.

1. Introduction

We begin with finite connected and undirected graphs without loops and multiple
edges. The terms not defined here are used in sense of Balakrishnan and Ranganathan
[1] or Cvetković et al. [5]. The adjacency matrix of a graphG with vertices v1, v2, . . . , vn

is an n× n matrix [aij] such that,

aij =

1, if vi is adjacent with vj,

0, otherwise.

The eigenvalues of adjacency matrix of graph is known as eigenvalues of graph. The
set of eigenvalues of the graph with their multiplicities is known as spectrum of the
graph. Hence,

spec(G) =
(
λ1 λ2 · · · λn

m1 m2 · · · mn

)
.
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Two non-isomorphic graphs are said to be cospectral if they have same spectra,
otherwise they are known as non-cospectral. Let G be a graph on n vertices and
λ1, λ2, . . . , λn be the eigenvalues of G. The energy of a graph G is the sum of absolute
values of the eigenvalues of graph G and denoted by E(G). Hence,

E(G) =
n∑

i=1
|λi| .

The concept of energy was introduced by Gutman [6]. A brief account of energy
of graph can be found in Cvetković et al. [5] and Li et al. [10]. Two non-isomorphic
graphs G1 and G2 of same order are said to be equienergetic if E(G1) = E(G2).

Ramane et al. [12, 13] have proved that if G1 and G2 are regular graphs of same
order then for k ≥ 2, Lk(G1) and Lk(G2), Lk(G1) and Lk(G2) are equienergetic. Here,
Lk(G) is called iterated line graph of G.

Some equienergetic graphs have been described in Li et al. [10], while a symmetric
computer aided study have carried out for equienergetic trees [2, 11]. Some open
problem on equienergetic graphs were posted in [8]. To find out non-copspectral
equienergetic graphs other than trees is challenging and interesting as well. We take
up this problems and construct a pair of graphs which are equienergetic.

In 1978 Gutman [6] conjectured that among all graphs with n vertices, the complete
graph Kn has the maximum energy. This was disproved by Walikar et al. [16] and
was defined the concept of hyperenergetic graphs whose energy is greater than that
of complete graphs. Gutman [7] has proved that hyperenergetic graphs on n vertices
exist for all n ≥ 8 and there are no hyperenergetic graphs on less than 8 vertices.

A graph G on order n is said to be hypoenergetic [3] if E(G) is less than its order
otherwise it is said to be non-hypoenergetic [4]. In 2007 Gutman [9] have proved that
if the graph G is regular of any non-zero degree, then G is non hypoenergetic.

The present work is aimed to contribute to find families of hyperenergetic and
hypoenergetic.

The splitting graph S ′(G) of a graph G is obtained by adding to each vertex v a new
vertex v′, such that v′ is adjacent to every vertex that is adjacent to v inG. The shadow
graph D2(G) of a connected graph G is constructed by taking two copies of G say G′

and G′′. Join each vertex u′ in G′ to the neighbors of the corresponding vertex u′′ in
G′′. Vaidya and Popat [15] have proved that for any graph G, E(S ′(G)) =

√
5E(G)

and E(D2(G)) = 2E(G).
The m-splitting graph Splm(G) of a graph G is obtained by adding to each vertex

v of G new m vertices, say v1, v2, v3, . . . , vm, such that vi, 1 ≤ i ≤ m, is adjacent to
each vertex that is adjacent to v in G.

The m-shadow graph Dm(G) of a connected graph G is constructed by taking m
copies of G, say G1, G2, . . . , Gm, then join each vertex u in Gi to the neighbors of the
corresponding vertex v in Gj, 1 ≤ i, j ≤ m.

Proposition 1.1 ([14]). E(Splm(G)) =
√

1 + 4mE(G).
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Proposition 1.2 ([14]). E(Dm(G)) = mE(G).

2. Equienergetic Graphs

Theorem 2.1. Spl2(G) and D3(G) are equienergetic.

Proof. Let G be any graph with n vertices. Then, D3(G) and Spl2(G) are graphs with
3n vertices. According to Proposition 1.1 and Proposition 1.2,

E(Spl2(G)) =
√

1 + 4(2)E(G) = 3E(G) = E(D3(G)). �

Example 2.1. Consider Spl2(C4) and D3(C4),

v′2

v′1

v′3

v′4

v2

v1

v3

v4

v′′1

v′′2 v′′3

v′′4

1Spl2(C4)
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Figure 1

A(Spl2(C4)) =

v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 v′′
1 v′′

2 v′′
3 v′′

4



v1 0 1 0 1 0 1 0 1 0 1 0 1
v2 1 0 1 0 1 0 1 0 1 0 1 0
v3 0 1 0 1 0 1 0 1 0 1 0 1
v4 1 0 1 0 1 0 1 0 1 0 1 0
v′

1 0 1 0 1 0 0 0 0 0 0 0 0
v′

2 1 0 1 0 0 0 0 0 0 0 0 0
v′

3 0 1 0 1 0 0 0 0 0 0 0 0
v′

4 1 0 1 0 0 0 0 0 0 0 0 0
v′′

1 0 1 0 1 0 0 0 0 0 0 0 0
v′′

2 1 0 1 0 0 0 0 0 0 0 0 0
v′′

3 0 1 0 1 0 0 0 0 0 0 0 0
v′′

4 1 0 1 0 0 0 0 0 0 0 0 0
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Therefore, spec(Spl2(C4))=
(

2 −2 4 −4 0
1 1 1 1 8

)
. Here,

E(Spl2(C4)) = 12,

A(D3(C4)) =

v1 v2 v3 v4 v′
1 v′

2 v′
3 v′

4 v′′
1 v′′

2 v′′
3 v′′

4



v1 0 1 0 1 0 1 0 1 0 1 0 1
v2 1 0 1 0 1 0 1 0 1 0 1 0
v3 0 1 0 1 0 1 0 1 0 1 0 1
v4 1 0 1 0 1 0 1 0 1 0 1 0
v′

1 0 1 0 1 0 1 0 1 0 1 0 1
v′

2 1 0 1 0 1 0 1 0 1 0 1 0
v′

3 0 1 0 1 0 1 0 1 0 1 0 1
v′

4 1 0 1 0 1 0 1 0 1 0 1 0
v′′

1 0 1 0 1 0 1 0 1 0 1 0 1
v′′

2 1 0 1 0 1 0 1 0 1 0 1 0
v′′

3 0 1 0 1 0 1 0 1 0 1 0 1
v′′

4 1 0 1 0 1 0 1 0 1 0 1 0

.

Therefore, spec(D3(C4)) =
(

6 −6 0
1 1 10

)
. Here, E(D3(C4)) = 12. Hence, Spl2(C4)

and D3(C4) are equienergetic.

3. Hyperenergetic Graphs

Theorem 3.1. S ′(Kn) is hyperenergetic if and only if n ≥ 6.

Proof. Consider a complete graph Kn on n vertices. Then, S ′(Kn) is a graph with
2n vertices. It is obvious that energy of complete graph with 2n vertices is 2(2n− 1).
Now, if S ′(Kn) is hyperenergetic, then

E(S ′(Kn)) > 2(2n− 1)⇔
√

5(E(Kn)) > 2(2n− 1)
⇔
√

5(2(n− 1)) > 2(2n− 1)

⇔n >
√

5− 1√
5− 2

⇔n ≥ 6. �

Example 3.1. Consider complete graph K6 and S ′(K6).
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A(S ′(K6)) =

v1 v2 v3 v4 v5 v6 v′
1 v′

2 v′
3 v′

4 v′
5 v′

6



v1 0 1 1 1 1 1 0 1 1 1 1 1
v2 1 0 1 1 1 1 1 0 1 1 1 1
v3 1 1 0 1 1 1 1 1 0 1 1 1
v4 1 1 1 0 1 1 1 1 1 0 1 1
v5 1 1 1 1 0 1 1 1 1 1 0 1
v6 1 1 1 1 1 0 1 1 1 1 1 0
v′

1 0 1 1 1 1 1 0 0 0 0 0 0
v′

2 1 0 1 1 1 1 0 0 0 0 0 0
v′

3 1 1 0 1 1 1 0 0 0 0 0 0
v′

4 1 1 1 0 1 1 0 0 0 0 0 0
v′

5 1 1 1 1 0 1 0 0 0 0 0 0
v′

6 1 1 1 1 1 0 0 0 0 0 0 0

Hence,

spec(S ′(K6)) =

−1 +
√

5
2

−1−
√

5
2

5 + 5
√

5
2

5− 5
√

5
2

5 5 1 1

 .
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Here,

E(S ′(K6)) = 10
√

5⇒E(S ′(K6)) > 22
⇒E(S ′(K6)) > E(K12)
⇒S ′(K6) is hyperenergetic.

The following is a graph of E(S ′(Kn)) and E(K2n) which helps to understand that
S ′(Kn) is hyperenergetic when n ≥ 6.
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E(K2n) = 2(2n− 1)
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5(n− 1)
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E
n
er
gy

E
(G

)
−→

Figure 3

The natural question arises: Are there any graphs which are equienergetic and
hyperenergetic as well? To answer this question we prove following corollary.

Corollary 3.1. D3(S ′(Kn)) and Spl2(S ′(Kn)) are equihyperenergetic graphs for
n ≥ 9.

Proof. As we have discussed in Theorem 3.1, S ′(Kn) is a graph with 2n vertices.
Therefore, D3(S ′(Kn)) is a graph with 6n vertices. To prove above result we show
that D3(S ′(Kn)) is hyperenergetic if and only if n ≥ 9.

If D3(S ′(Kn)) is hyperenergetic then
E(D3(S ′(Kn))) > 2(6n− 1)⇔3E(S ′(Kn)) > 2(6n− 1)

⇔3
√

5(E(Kn)) > 2(6n− 1)
⇔3
√

5(2(n− 1)) > 2(6n− 1)
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⇔n > 3
√

5− 1
3
√

5− 6
⇔n ≥ 9.

Hence, D3(S ′(Kn)) is hyperenergetic for n ≥ 9. Therefore, according to Theorem 2.1,
D3(S ′(Kn)) and Spl2(S ′(Kn)) are equihyperenergetic for n ≥ 9. �

4. Hypoenergetic Graphs

Theorem 4.1. Dm(K1,n) is hypoenergetic.

Proof. Consider star graph K1,n on n vertices. Then E(K1,n) = 2
√
n. Now, Dm(K1,n)

is a graph with m(n+ 1) vertices. As,

n > 1⇒(n− 1)2 > 0
⇒n2 − 2n+ 1 > 0
⇒n2 + 2n+ 1 > 4n
⇒4n < (n+ 1)2

⇒2
√
n < (n+ 1)

⇒m(2
√
n) < m(n+ 1).

According to Proposition 1.2, we have E(Dm(K1,n)) = mE(K1,n) = m(2
√
n) <

m(n+ 1). Hence, Dm(K1,n) is hypoenergetic. �

Example 4.1. Consider star graph K1,4 and D2(K1,4) (see Figure 4). Therefore,

spec(D2(K1,4)) =
(

4 −4 0
1 1 8

)
. Hence, E(D2(K1,4)) = 8 < 10 and D2(K1,4) is hy-

poenergetic.
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Figure 4
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A(D2(K1,4)) =

v v1 v2 v3 v4 v′ v′
1 v′

2 v′
3 v′

4



v 0 1 1 1 1 0 1 1 1 1
v1 1 0 0 0 0 1 0 0 0 0
v2 1 0 0 0 0 1 0 0 0 0
v3 1 0 0 0 0 1 0 0 0 0
v4 1 0 0 0 0 1 0 0 0 0
v′ 0 1 1 1 1 0 1 1 1 1
v′

1 1 0 0 0 0 1 0 0 0 0
v′

2 1 0 0 0 0 1 0 0 0 0
v′

3 1 0 0 0 0 1 0 0 0 0
v′

4 1 0 0 0 0 1 0 0 0 0

The following graph on Figure 5 is a graph of n and E(G) which helps to understand
that D2(K1,n) is hypoenergetic.
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Figure 5

The natural question arises: are there any graphs which are equienergetic as well
as hypoenergetic? We call such graphs as equihypoenergetic. To answer this question
we prove following corollary.

Corollary 4.1. D3(K1,n) and Spl2(K1,n) are equihypoenergertic graphs.
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Proof. It is obvious that from Theorem 4.1, D3(K1,n) is hypoenergetic and from The-
orem 2.1, D3(K1,n) and Spl2(K1,n) are equienergetic. Hence, D3(K1,n) and Spl2(K1,n)
are equihypoenergertic graphs. �
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