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Abstract: In this paper, we discuss relations among Zagreb polynomials of a graph G and

generalized xyz-point-line transformation graphs T xyz(G) when z = −. Zagreb polynomials

of xyz-point-line transformation graphs are obtained in terms of Zagreb polynomials of the

graph G.
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§1. Introduction

By a Graph G = (V, E) we mean a nontrivial, finite, simple, undirected graph with vertex set

V and an edge set E of order n and size m. The degree dG(v) of a vertex v in G is the number

of edges incident to it in G. Let G, L(G) and S(G) of a graph G are complement, line graph

and subdivision graph of a graph G respectively. The partial complement of subdivision graph

S(G) of a graph G whose vertex set is V (G)∪E(G) where two vertices are adjacent if and only

if one is a vertex of G and the other is an edge of G non incident with it.

In this paper, we denote u ∼ v (u ≁ v) for vertices u and v are adjacent (resp., nonadjacent),

e ∼ f (e ≁ f) for the adjacent (resp., nonadjacent) edges e and f and u ∼ e (u ≁ e) for the

vertex u and an edge e are incident (resp., nonincident) in G. Other undefined notations and

terminologies can be found in [17] or [19].

Polynomials are one of the graph invariants which does not depend on the labeling or

pictorial representation of the graph. A topological index is also one such graph invariant. The

topological indices have their applications in several branches of science and technology.

The first and second Zagreb indices are amongst the oldest and best known topological

indices defined in 1972 by Gutman [15] as follows:

M1(G) =
∑

v∈V (G)

dG(v)2 and M2(G) =
∑

uv∈E(G)

dG(u)dG(v),

1Partially supported by the University Grants Commission (UGC), New Delhi, through UGC-SAP DRS-III
for 2016-2021: F.510/3/DRS-III/2016(SAP-I).

2Received October 12, 2018, Accepted May 16, 2019.
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respectively. These are widely studied degree based topological indices due to their applica-

tions in chemistry, for details refer to [10,11,14,16,23]. The first Zagreb index [21] can also be

expressed as

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

Ashrafi et al. [1] defined respectively the first and second Zagreb coindices as

M1(G) =
∑

uv 6∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv 6∈E(G)

[dG(u)dG(v)].

In 2004, Milićević et al. [20] reformulated the Zagreb indices in terms of edge-degrees

instead of vertex-degrees. The first and second reformulated Zagreb indices are defined respec-

tively by

EM1(G) =
∑

e∈E(G)

dG(e)2 and EM2(G) =
∑

e∼f

[dG(e)dG(f)].

In [18], Hosamani and Trinajstić defined the first and second reformulated Zagreb coindices

respectively as

EM1(G) =
∑

e≁f

[dG(e) + dG(f)] and EM2(G) =
∑

e≁f

[dG(e)dG(f)].

Considering the Zagreb indices, Fath-Tabar [13] defined first and the second Zagreb poly-

nomials as

M1(G, x) =
∑

vi,vj∈E(G)

xdG(vi)+dG(vj) and M2(G, x) =
∑

vi,vj∈E(G)

xdG(vi)·dG(vj)

respectively, where x is a variable. In addition, Shuxian [22] defined two polynomials related

to the first Zagreb index in the form

M∗
1 (G, x) =

∑

vi∈V (G)

dG(vi)x
dG(vi) and M0(G, x) =

∑

vi∈V (G)

xdG(vi).

A. R. Bindusree et al. defined the following polynomials in [9],

M4(G, x) =
∑

vi,vj∈E(G)

xdG(vi)((dG(vi)+dG(vj)), M5(G, x) =
∑

vi,vj∈E(G)

xdG(vj)((dG(vi)+dG(vj)),

Ma,b(G, x) =
∑

vi,vj∈E(G)

xadG(vi)+bdG(vj), M
′

a,b(G, x) =
∑

vi,vj∈E(G)

x(dG(vi)+a)(dG(vj)+b).

§2. Generalized xyz-Point-Line Transformation Graph T xyz(G)

For a graph G = (V, E), let G0 be the graph with V (G0) = V (G) and with no edges, G1 the

complete graph with V (G1) = V (G), G+ = G, and G− = G. Let G denotes the set of simple

graphs. The graph operations depending on x, y, z ∈ {0, 1, +,−} induce functions T xyz : G → G.

These operations were introduced by Deng et al. in [12] and named them as xyz-transformations
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of G, denoted by T xyz(G) = Gxyz. In [2], Wu Bayoindureng et al. introduced the total

transformation graphs and studied their basic properties. Motivated by this, Basavanagoud

[3] studied the basic properties of the xyz-transformation graphs by changing them as xyz-

point-line transformation graphs and denoted as T xyz(G) to avoid confusion between various

transformations.

Definition 2.1([12]) Given a graph G with vertex set V (G) and edge set E(G) and three

variables x, y, z ∈ {0, 1, +,−}, the xyz-point-line transformation graph T xyz(G) of G is the

graph with vertex set V (T xyz(G)) = V (G) ∪ E(G) and the edge set E(T xyz(G)) = E((G)x) ∪

E((L(G))y) ∪ E(W ) where W = S(G) if z = +, W = S(G) if z = −, W is the graph with

V (W ) = V (G) ∪ E(G) and with no edges if z = 0 and W is the complete bipartite graph with

parts V (G) and E(G) if z = 1.

Figure 1. P4 and its generalized xyz-polint-line transformation graphs T xy−(P4).
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Since there are 64 distinct 3 - permutations of {0, 1, +,−}. Thus 64 kinds of generalized

xyz-point-line transformation graphs are obtained. There are 16 different graphs for each case

when z = 0, z = 1, z = +, z = −. In this paper, we consider the xyz-point-line transformation

graph T xyz(G) with z = −. The self-explanatory examples of the path P4 and its xyz-point-line

transformation graphs T xy−(P4) are depicted in Figure 1. For more on generalized transforma-

tion graphs refer to [2]-[8].

The following Observations are useful in proving the theorems.

Observation 2.1([4]) Let G be a graph of order n and size m. Let v be a vertex of G and

Y = {0, 1, +,−}. Then

dT xy−(v) =






m − dG(v) if x = 0, y ∈ Y,

n + m − 1 − dG(v) if x = 1, y ∈ Y,

m if x = +, y ∈ Y,

n + m − 1 − 2dG(v) if x = −, y ∈ Y.

Observation 2.2([4]) Let G be a graph of order n and size m. Let e be an edge of G and

Y = {0, 1, +,−}. Then

dT xy−(e) =





n − 2 if y = 0, x ∈ Y,

n + m − 3 if y = 1, x ∈ Y,

n − 2 + dG(e) if y = +, x ∈ Y,

n + m − 3 − dG(e) if y = −, x ∈ Y.

§3. Results on the Zagreb Polynomials of T xy−(G)

In this section, we obtain the Zagreb polynomials of the xyz-point-line transformation graph

T xyz(G) with z = −. In this process, to cover the edges in the complements G, S(G) and L(G)

we need the degrees of nonadjacent vertices (or edges) in the graph. Degrees of these nonadja-

cent vertices (or edges) gives Zagreb coindices. To overcome from this problem Basavanagoud

and Jakkannavar [7] defined the first, second and third Zagreb co-polynomials of a graph G by

using the concept of Zagreb coindices as

M1(G, x) =
∑

vi,vj /∈E(G)

xdG(vi)+dG(vj), M2(G, x) =
∑

vi,vj /∈E(G)

xdG(vi)·dG(vj)

and

M3(G, x) =
∑

vi,vj /∈E(G)

x|dG(vi)−dG(vj)|

respectively, where x is a variable.
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In addition, in [7] they defined

M4(G, x) =
∑

vi,vj /∈E(G)

xdG(vi)(dG(vi)+dG(vj)), M5(G, x) =
∑

vi,vj /∈E(G)

xdG(vj)(dG(vi)+dG(vj)),

Ma,b(G, x) =
∑

vi,vj /∈E(G)

xadG(vi)+bdG(vj), M ′
a,b(G, x) =

∑

vi,vj /∈E(G)

x(dG(vi)+a)(dG(vj)+b).

The following theorems give results on Zagreb polynomials of the generalized xyz-point-line

transformation graphs T xy−(G).

Theorem 3.1 Let G be a graph of order n and size m. Then Zagreb polynomials of T 00−(G)

are

M1(T
00−(G), x) = mxm+n−2M0(G, x−1) − xm+n−2M∗

1 (G, x−1)

M2(T
00−(G), x) = mxm(n−2)M0(G, x−(n−2)) − xm(n−2)M∗

1 (G, x−(n−2))

M3(T
00−(G), x) = mx|n−m−2|M0(G, x) − x|n−m−2|M∗

1 (G, x).

Proof From Observations (2.1) and (2.2) we have

dT 00−(G)(v) =





m − dG(v) if v ∈ V (G),

n − 2 if v ∈ E(G).

By using definition of M1(G, x), we have

M1(T
00−(G), x) =

∑

uv∈E(T 00−(G))

x
dT00−(G)(u)+dT00−(G)(v)

=
∑

u≁v

x
dT00−(G)(u)+dT00−(G)(v) =

∑

u≁v

xm−dG(v)+n−2

= x2−m−n
∑

v∈V (G)

(m − dG(v))x−dG(u).

= mxm+n−2M0(G, x−1) − xm+n−2M∗
1 (G, x−1).

By using definition of M2(G, x), we have

M2(T
00−(G), x) =

∑

uv∈E(T 00−(G))

x
dT00−(G)(u)dT00−(G)(v)

=
∑

u≁v

x
dT00−(G)(u)dT00−(G)(v)

=
∑

u≁v

x(m−dG(u))(n−2)

= x−m(n−2)
∑

v∈V (G)

(m − dG)x−m(n−2)dG(v)

= mxm(n−2)M0(G, x−(n−2)) − xm(n−2)M∗
1 (G, x−(n−2))



6 B. Basavanagoud and Anand P. Barangi

By using definition of M3(G, x), we have

M3(T
00−(G), x) =

∑

uv∈E(T 00−(G))

x
|dT00−(G)(u)−dT00−(G)(v)|

=
∑

u≁v

x
|dT00−(G)(u)−dT00−(G)(v)|

=
∑

u≁v

x|m−dG(u)−n+2|

= x|n−m−2|
∑

u∈V (G)

(m − dG(v))x|dG(u)|

= mx|n−m−2|M0(G, x) − x|n−m−2|M∗
1 (G, x) 2

Theorem 3.2 Let G be a graph of order n and size m. Then, the Zagreb polynomials of

T 01−(G) are

M1(T
01−(G), x) =

(
m

2

)
x2m+n−3 + mx2m+n−3M0(G, x−1) − x2m+n−3M∗

1 (G, x−1)

M2(T
01−(G), x) =

(
m

2

)
x(n+m−3)2 + mxm(n+m−3)M0(G, x−(n+m−3))

−xm(n+m−3)M∗
1 (G, x−(n+m−3))

M3(T
01−(G), x) =

(
m

2

)
+ mxn−3M0(G, x−1) − xn−3M∗

1 (G, x−1).

Proof From Observations (2.1) and (2.2) we have

dT 01−(G)(v) =





m − dG(v) if v ∈ V (G)

n + m − 3 if v ∈ E(G)

By using the definition of M1(G, x), we have

M1(T
01−(G), x) =

∑

uv∈E(T 01−(G))

x
dT01−(G)(u)+dT01−(G)(v)

=
∑

uv∈E(L(G))

x
dT01−(G)(u)+dT01−(G)(v)

+
∑

u,v/∈E(LG)

x
dT01−(G)(u)+dT01−(G)(v)

+
∑

u≁v

x
dT01−(G)(u)+dT01−(G)(v)

=
∑

uv∈E(L(G))

x2(n+m−3) +
∑

u,v/∈E(L(G)

x2(n+m−3) +
∑

u≁v

xm−dG(v)+n+m−3

=

(
m

2

)
x2m+n−3 + mx2m+n−3M0(G, x−1) − x2m+n−3M∗

1 (G, x−1).
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Similarly, we known

M2(T
01−(G), x) =

∑

uv∈E(T 01−(G))

x
dT01−(G)(u)dT01−(G)(v)

=
∑

uv∈E(L(G))

x
dT01−(G)(u)dT01−(G)(v) +

∑

u,v/∈E(LG)

x
dT01−(G)(u)dT01−(G)(v)

+
∑

u≁v

x
dT01−(G)(u)dT01−(G)(v)

=

(
m

2

)
x(n+m−3)2 + mxm(n+m−3)M0(G, x−(n+m−3))

−xm(n+m−3)M∗
1 (G, x−(n+m−3))

M3(T
01−(G), x) =

∑

uv∈E(T 01−(G))

x
|dT01−(G)(u)−dT01−(G)(v)|

=
∑

uv∈E(L(G))

x
|dT01−(G)(u)−dT01−(G)(v)| +

∑

u,v/∈E(L(G)

x
|dT01−(G)(u)−dT01−(G)(v)|

+
∑

u≁v

x
|dT01−(G)(u)−dT01−(G)(v)|

=

(
m

2

)
+ mxn−3M0(G, x−1) − xn−3M∗

1 (G, x−1). 2
Theorem 3.3 Let G be a graph of order n and size m. Then Zagreb polynomials of T 0+−(G)

are

M1(T
0+−(G), x) = x2mM1(L(G), x−1) + xm+n−2

∑

u≁v

x−dG(u)+dG(v)

M2(T
0+−(G), x) = M ′

(n−2,n−2)(L(G), x) +
∑

u≁v

x(m−dG(u))(n−2+dG(v))

M3(T
0+−(G), x) = M3(L(G), x) − xm−n+2

∑

u≁v

x|dG(u)+dG(v)

Proof From Observations (2.1) and (2.2) we have

dT 0+−(G)(v) =





m − dG(v) if v ∈ V (G)

n − 2 + dG(v) if v ∈ E(G)

Applying the definition of M1(G, x), we have

M1(T
0+−(G), x) =

∑

uv∈E(T 0+−(G))

x
dT0+−(G)(u)+dT0+−(G)(v)

=
∑

uv∈E(L(G))

x
dT0+−(G)(u)+dT0+−(G)(v) +

∑

u≁v

x
dT0+−(G)(u)+dT0+−(G)(v)

= x2mM1(L(G), x−1) + xm+n−2
∑

u≁v

x−dG(u)+dG(v).
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Similarly, we know

M2(T
0+−(G), x) =

∑

uv∈E(T 0+−(G))

x
dT0+−(G)(u)dT0+−(G)(v)

=
∑

uv∈E(L(G))

x
dT0+−(G)(u)dT0+−(G)(v) +

∑

u≁v

x
dT0+−(G)(u)dT0+−(G)(v)

= M ′
(n−2,n−2)(L(G), x) +

∑

u≁v

x(m−dG(u))(n−2+dG(v))

and

M3(T
0+−(G), x) =

∑

uv∈E(T 0+−(G))

x
|dT0+−(G)(u)−dT0+−(G)(v)|

=
∑

uv∈E(L(G))

x
|dT0+−(G)(u)−dT0+−(G)(v)| +

∑

u≁v

x
|dT0+−(G)(u)−dT0+−(G)(v)|

= M3(L(G), x) − xm−n+2
∑

u≁v

x|dG(u)+dG(v). 2
Theorem 3.4 Let G be a graph of order n and size m. Then Zagreb polynomials of T 0−−(G)

are

M1(T
0−−(G), x) = x2(n+m−3)M1(L(G), x−1) + x2m+n−3

∑

u,v/∈E(G)

x−(dG(u)+dG(v))

M2(T
0−−(G), x) = M ′

(−n−m+3,−n−m+3)(L(G), x) +
∑

u≁v

x(m−dG(u))(m+n−3−dG(v))

M3(T
0−−(G), x) = M3(L(G), x) − x|n−3|

∑

u≁v

x|dG(u)+dG(v)

Proof From Observations (2.1) and (2.2) we have

dT 0−−(G)(v) =





m − dG(v) if v ∈ V (G)

n + m − 3 − dG(v) if v ∈ E(G)

By the definition of M1(G, x), we have

M1(T
0−−(G), x) =

∑

uv∈E(T 0−−(G))

x
dT0−−(G)(u)+dT0+−(G)(v)

=
∑

uv/∈E(L(G))

x
dT0−−(G)(u)+dT0−−(G)(v) +

∑

u≁v

x
dT0−−(G)(u)+dT0−−(G)(v)

= x2(n+m−3)M1(L(G), x−1) + x2m+n−3
∑

u,v/∈E(G)

x−(dG(u)+dG(v))

Similarly, we know

M2(T
0−−(G), x) =

∑

uv∈E(T 0−−(G))

x
dT0−−(G)(u)dT0−−(G)(v)
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=
∑

uv/∈E(L(G))

x
dT0−−(G)(u)dT0−−(G)(v) +

∑

u≁v

x
dT0−−(G)(u)dT0−−(G)(v)

= M ′
(−n−m+3,−n−m+3)(L(G), x) +

∑

u≁v

x(m−dG(u))(m+n−3−dG(v)).

M3(T
0−−(G), x) =

∑

uv∈E(T 0−−(G))

x
|dT0−−(G)(u)−dT0−−(G)(v)|

=
∑

uv/∈E(L(G))

x
|dT0−−(G)(u)−dT0−−(G)(v)| +

∑

u≁v

x
|dT0−−(G)(u)−dT0−−(G)(v)|

= M3(L(G), x) − x|n−3|
∑

u≁v

x|dG(u)+dG(v). 2
Theorem 3.5 Let G be a graph of order n and size m. Then

M1(T
10−(G), x) = x2(n+m−1)M−1,−1(G, x) + x2mM1(G, x) + mx(2n+m−3)M0(G, x−1)

+M∗
1 (G, x−1)x(2n+m−3)

M2(T
10−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x) + M ′
m,m(G, x)

+mx(n+m−1)(n+2)M0(G, x−(n+2)) − x(n+m−1)(n+2)M∗
1 (G, x−(n+2))

M3(T
10−(G), x) = M3(G, x) + M3(G, x) + mxm+1M0(G, x−1) − xm+1M∗

1 (G, x−1).

Proof From Observations (2.1) and (2.2) we have,

dT 10−(G)(v) =





n + m − 1 + dG(v) if v ∈ V (G)

n − 2 if v ∈ E(G)

By the definition of M1(G, x), we know

M1(T
10−(G), x) =

∑

uv∈E(T 10−(G))

x
dT10−(G)(u)+dT10−(G)(v)

=
∑

uv∈E(G)

x
dT10−(G)(u)+dT10−(G)(v) +

∑

uv/∈E(G)

x
dT10−(G)(u)+dT10−(G)(v)

+
∑

u≁v

x
dT10−(G)(u)+dT10−(G)(v)

=
∑

uv∈E(G)

xn+m−1+dG(u)+n+m−1+dG(v) +
∑

uv/∈E(G)

xn+m−1+dG(u)+n+m−1+dG(v)

+
∑

u≁v

xn+m−1−dG(v)+n−2

= x2(n+m−1)M−1,−1(G, x) + x2mM1(G, x) + mx(2n+m−3)M0(G, x−1)

+M∗
1 (G, x−1)x(2n+m−3).
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Similarly, by the definition of M2(G, x), we have

M2(T
10−(G), x) =

∑

uv∈E(T 10−(G))

x
dT10−(G)(u)dT10−(G)(v)

=
∑

uv∈E(G)

x
dT10−(G)(u)dT10−(G)(v) +

∑

uv/∈E(G)

x
dT10−(G)(u)dT10−(G)(v)

+
∑

u≁v

x
dT10−(G)(u)dT10−(G)(v)

= M ′
−(n+m−1),−(n+m−1)(G, x) + M ′

m,m(G, x)

+mx(n+m−1)(n+2)M0(G, x−(n+2)) − x(n+m−1)(n+2)M∗
1 (G, x−(n+2)).

M3(T
10−(G), x) =

∑

uv∈E(T 10−(G))

x
|dT10−(G)(u)−dT10−(G)(v)|

=
∑

uv∈E(G)

x
|dT10−(G)(u)−dT10−(G)(v)| +

∑

uv/∈E(G)

x
|dT10−(G)(u)−dT10−(G)(v)|

+
∑

u≁v

x
|dT10+(G)(u)−dT10+(G)(v)|

= M3(G, x) + M3(G, x) + mxm+1M0(G, x−1) − xm+1M∗
1 (G, x−1). 2

The proof of following theorems are analogous to that of Theorems 3.1-3.5.

Theorem 3.6 Let G be a graph of order n and size m. Then

M1(T
11−(G), x) = x2(n+m−1)M1(G, x−1) + x2mM1(G, x)

+

(
m

2

)
x2(n+m−3) + x2(n+m−3)M∗

1 (G, x−1)

M2(T
11−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x) + M ′
m,m(G, x) +

(
m

2

)
x(n+m−3)2

+x(n+m−1)(n+m−3)M∗
1 (G, x(n+m−3))

M3(T
11−(G), x) = M1(G, x) + M1(G, x) +

(
m

2

)
+ x2M∗

1 (G, x).

Theorem 3.7 Let G be a graph of order n and size m. Then

M1(T
1+−(G), x) = x2(n+m−1)M−1,−1(G, x) + x2mM1(G, x)

+x2(n−2)M1(L(G), x) + x2(n+m−3)
∑

u≁v

x−dG(u)+dG(v)

M2(T
1+−(G), x) = M

′

−(n+m−1),(n−2)(G, x−1) + M
′
−(n+m−1),(n−2)(G, x−1)

+M
′

n−2,n−2(L(G), x) +
∑

u≁v

x(n+m−1−dG(u))(n−2+dG(v))

M3(T
1+−(G), x) = xm+1M3(G, x) + x2mM1(G, x) + M3(L(G), x) + xm+1

∑

u≁v

x|dG(u)+dG(v)|.
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Theorem 3.8 Let G be a graph of order n and size m. Then

M1(T
1−−(G), x) = x2(n+m−1)M−1,−1(G, x) + x2mM1(G, x) + x2(n+m−3)M1(L(G), x)

+x2(n+m−2)
∑

u≁v

x−dG(u)−dG(v)

M2(T
1−−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x) + M ′
m,m(G, x) + M ′

n+2,n+2(L(G), x)

+
∑

u≁e

x(n+m−1−dG(u))(n+m−3−dG(v))

M3(T
1−−(G), x) = M1(G, x) + M1(G, x) + M1(L(G), x) + x2

∑

u≁v

x|dG(u)+dG(v)|.

Theorem 3.9 Let G be a graph of order n and size m. Then

M1(T
+0−(G), x) = mx2m + m(n − 2)xm+n−2

M2(T
+0−(G), x) = mxm2

+ m(n − 2)xm(n−2)

M3(T
+0−(G), x) = m + m(n − 2)x|m−n+2|.

Theorem 3.10 Let G be a graph of order n and size m. Then

M1(T
+1−(G), x) = mx2m +

(
m

2

)
x2(n+m−3) + m(n − 2)x(2m+n−3)

M2(T
+1−(G), x) = mxm2

+

(
m

2

)
x(n+m−3)2 + m(n − 2)xm(m+n−3)

M3(T
+1−(G), x) = m +

(
m

2

)
+ m(n − 2)x|n−3|.

Theorem 3.11 Let G be a graph of order n and size m. Then

M1(T
++−(G), x) = mx2m + x2(n−2)M1(L(G), x) + mxm+n−2M0(G, x) − xm+n−2M∗

1 (G, x)

M2(T
++−(G), x) = mxm2

+ Mn−2,n−2(L(G), x) + mxm(n−2)M0(G, xm) − xm(n−2)M∗
1 (G, xm)

M3(T
++−(G), x) = m + M3(L(G), x) + mx|m+n−2|M0(G, x) − x|m+n−2|M∗

1 (G, x).

Theorem 3.12 Let G be a graph of order n and size m. Then

M1(T
+−−(G), x) = mx2m + x2(n+m−3)M1(L(G), x−1)

+mx2m+n−3M0(G, x−1) − x2m+n−3M∗
1 (G, x−1)

M2(T
+−−(G), x) = mxm2

+ Mn−2,n−2(L(G), x)

+mxm(m+n−3)M0(G, x−m) − xm(m+n−3)M∗
1 (G, x−m)

M3(T
+−−(G), x) = m + M3(L(G), x) + mxn−3M0(G, x) − xn−3M∗

1 (G, x).
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Theorem 3.13 Let G be a graph of order n and size m. Then

M1(T
−0−(G), x) = x−2(n+m−1)M1(G, x2) + mx2n+m−3M0(G, x−2)

−x(2n+m−3)M∗
1 (G, x−2)

M2(T
−0−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x2) + mx(n−2)(n+m−1)M0(G, x−2(n−2))

+mx(n−2)(n+m−1)M∗
1 (G, x−2(n−2))

M3(T
−0−(G), x−2) = M3(G, x2) + mxm+1M0(G, x−2) − xm+1M∗

1 (G, x−2).

Theorem 3.14 Let G be a graph of order n and size m. Then

M1(T
−1−(G), x) = x2(n+m−1)M1(G, x−2) +

(
m

2

)
x2(n+m−3) + mx2(n+m−2)M0(G, x−2)

−x2(n+m−3)M∗
1 (G, x)

M2(T
−1−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x2) +

(
m

2

)
x(n+m−3)2

+mx(n+m−3)(n+m)M0(G, x−2(n+m−3))

−x(n+m−3)(n+m)M∗
1 (G, x−2(n+m−3))

M3(T
−1−(G), x−2) = M3(G, x2) +

(
m

2

)
+ mx−2M0(G, x2) − x−2M∗

1 (G, x2).

Theorem 3.15 Let G be a graph of order n and size m. Then

M1(T
−+−(G), x) = x2(n+m−1)M1(G, x

−2) + x(n−2)M1(L(G), x) + x2n+m−3
∑

u≁v

x−2dG(u)+dG(v)

M2(T
−+−(G), x) = M ′−(n+m−1),−(n+m−1)(G, x

2) +M ′
(n+2,n+2)(L(G), x)

+
∑

u≁v

x(n+m−1−2dG(u))(n−2+dG(v))

M3(T
−+−(G), x) = x|m+1|M ′

−2,−1(G, x) +M3(L(G), x) + xm+1
∑

u≁v

x|2dG(u)+dG(v)|.

Theorem 3.16 Let G be a graph of order n and size m. Then

M1(T
−−−(G), x) = x2(n+m−1)M1(G, x−2) + x2(n+m−3)M1(L(G), x−1)

+x2(n+m−1)
∑

u≁v

x−2dG(u)−dG(v)

M2(T
−−−(G), x) = M ′

−(n+m−1),−(n+m−1)(G, x2) + M ′
−(n+m−3),−(n+m−3)(L(G), x)

+
∑

u≁v

x(n+m−1−dG(u))(n+m−3−dG(v))

M3(T
−−−(G), x) = M3(G, x) + M3(L(G), x) + x2

∑

u≁v

x|dG(u)−dG(v)|
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§1. Introduction

Let U = {z : |z| < 1} denote an open unit disc and let H denote the class of all complex valued,

harmonic and sense preserving univalent functions f in U normalized by f(0) = fz(0) − 1 = 0.

Each f ∈ H can be expressed by f = h + ḡ where

h(z) = z +

∞∑

n=2

anzn , g(z) =

∞∑

n=1

bnzn, |b1| < 1, (1.1)

are analytic in U . A necessary and sufficient condition for f to be locally univalent and sense

- preserving in U is that |h′(z)| > |g′(z)| in U . Clunie and Sheil-Small [3] studied H together

with some geometric sub-classes of H. We note that the family H of orientation preserving,

normalized harmonic univalent functions reduces to the well known class S of normalized uni-

valent functions in U , if the co-analytic part of f is identically zero, that is g ≡ 0. Harmonic

functions are famous for their use in the study of minimal surfaces and also play important

roles in a variety of problems in applied mathematics. We can find more details in [1, 2, 4, 5].

Also let H denote the subclass of H consisting of functions f = h + ḡ so that the functions h

and g take the form

h(z) = z −

∞∑

n=2

anzn , g(z) = −

∞∑

n=1

bnzn, |b1| < 1. (1.2)

Definition 1.1 Let m be any positive integer. A domain D is said to be m-fold symmetric if a

rotation of D about the origin through an angle 2π
m carries D onto itself. A function f is said

1Received July 21, 2018, Accepted May 20, 2019.
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to be m-fold symmetric in D if for every z in D we have

f
(
e

2πi
m z
)

= e
2πi
m f(z), z ∈ D.

The family of all k-fold symmetric functions is denoted by Sk, and for k = 2 we get

class of odd univalent functions. The notion of (j, m)-symmetrical functions (m = 2, 3, · · · , and

j = 0, 1, 2, · · · , m−1) is a generalization of the notion of even, odd, k-symmetrical functions and

also generalizes the well-known result that each function defined on a symmetrical subset can be

uniquely expressed as the sum of an even function and an odd function. The theory of (j, m)-

symmetrical functions has many interesting applications; for instance, in the investigation of the

set of fixed points of mappings, for the estimation of the absolute value of some integrals, and for

obtaining some results of the type of Cartan’s uniqueness theorem for holomorphic mappings,

see [8]. Denote the family of all (j, m)-symmetrical functions by S(j,m). We observe that, S(0,2),

S(1,2) and S(1,m) are the classes of even, odd and m-symmetric functions respectively. We have

the following decomposition theorem.

Theorem 1.2([8]) For every mapping f : U 7→ C, and a m-fold symmetric set, there exists

exactly one sequence of (j, m)-symmetrical functions fj,m such that

f(z) =

m−1∑

j=0

fj,m(z),

where

fj,m(z) =
1

m

m−1∑

v=0

ε−vjf (εvz) , z ∈ U . (1.3)

Remark 1.3 Equivalently, (1.3) may be written as

fj,m(z) =

∞∑

n=1

δn,janzn, a1 = 1, (1.4)

where

δn,j =
1

m

m−1∑

v=0

ε(n−j)v =





1, n = lm + j;

0, n 6= lm + j;
, (1.5)

(l ∈ N, m = 1, 2, · · · , j = 0, 1, 2, · · · , m − 1).

Yong Chan Kim et al [7] discussed the class HCV (k, α) of complex valued, sense preserving

harmonic univalent functions. f of the form (1.1) and satisfying

R

{
1 + (1 + keiφ)

z2h′′(z) + 2zg′(z) + z2g′′(z)

zh′(z) − zg′(z)

}
≥ α, 0 ≤ α < 1. (1.6)

Now, using the concept of (j, m) symmetric points we define the following.
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Definition 1.4 For 0 ≤ α < 1 and m = 1, 2, 3, · · · , j = 0, 1, 2, · · · , m − 1. Let HCV j,m(k, α)

which denote the class of sense-preserving, harmonic univalent functions f of the form (1.1)

which satisfy the condition

∂

∂θ

(
argf(reiθ)

)
= Im

(
∂
∂θ f ′(reiθ)

f ′
j,m(reiθ)

)

= Re

{
1 + (1 + keiφ)

z2h′′(z) + 2zg′(z) + z2g′′(z)

zh′
j,m(z) − zg′j,m(z)

}
≥ α. (1.7)

where z = reiθ, 0 ≤ r < 1, 0 ≤ θ < 2π, 0 ≤ k < ∞ and fj,m = hj,m + gj,m where hj,m, gj,m

given by

hj,m(z) =
1

m

m−1∑

v=0

ε−vjh(εvz), gj,m(z) =
1

m

m−1∑

v=0

ε−vjg(εvz). (1.8)

We need the following result due to Jahangiri [6] to prove our main results.

Theorem 1.5 Let f = h + ḡ with h and g of the form (1.1). If

∞∑

n=1

n(n − α)

1 − α
|an| +

∞∑

n=1

n(n + α)

1 − α
|bn| ≤ 2, a1 = 1, 0 ≤ α < 1, (1.9)

then f is harmonic, sense-preserving, univalent in U , and f is convex harmonic of order α

denoted by HK(α). Notice that the condition (1.9) is also necessary if f ∈ HK(α) ≡ HK(α)∩

H.

§2. Main Results

Theorem 2.1 Let f = h+ g of the form (??) and fj,m = hj,m + gj,m with hj,m and gj,m given

by (1.8). If 0 ≤ k < ∞, 0 ≤ α < 1, m = 1, 2, 3, · · · , j = 0, 1, 2, · · · , m − 1 and

∞∑

n=1

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
| an | +

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
| bn |≤ 2, (2.1)

then f is harmonic, sense- preserving, univalent in U , and f ∈ HCV j,m(k, α), where δn,j given

by (1.5).

Proof Since n − α ≤ n + nk − k − αδn,j and n + α ≤ n + nk + k + αδn,j for 0 ≤ k < ∞,

it follows from Theorem 1.5 that f ∈ HK(α) and hence f is sense- preserving and convex

univalent in U . Now we need to show that if (2.1) holds then

Re

{
zh′(z) + (1 + keiφ)z2h′′(z) + (1 + 2keiφ)zg′(z) + (1 + keiφ)z2g′′(z)

zh′
j,m(z) − zg′j,m(z)

}

= Re

(
A(z)

B(z)

)
≥ α. (2.2)
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Using the fact that Re(w) ≥ α if and only if | 1 − α + w |≥| 1 + α −w | it suffices to show

that

| A(z) + (1 − α)B(z) | − | A(z) − (1 + α)B(z) | ≥ 0, (2.3)

where A(z) = zh′(z) + (1 + keiφ)z2h′′(z) + (1 + 2keiφ)zg′(z) + (1 + keiφ)z2g′′(z) and B(z) =

zh′
j,m(z) − zg′j,m(z). substituting for A(z) and B(z) in (2.3), we obtain

|A(z) + (1 − α)B(z)| − |A(z) − (1 + α)B(z)|

=
∣∣∣zh′(z) + (1 + keiφ)z2h′′(z) + (1 + 2keiφ)zg′(z) + (1 + keiφ)z2g′′(z)

+ (1 − α)[zh′
j,m(z) − zg′j,m(z)]

∣∣∣

−
∣∣∣zh′(z) + (1 + keiφ)z2h′′(z) + (1 + 2keiφ)zg′(z) + (1 + keiφ)z2g′′(z)

−(1 + α)[zh′
j,m(z) − zg′j,m(z)]

∣∣∣

=

∣∣∣∣∣[1 + (1 − α)δ1,j ]z +
∞∑

n=2

n[n + (n − 1)keiφ + (1 − α)δn,j ]anzn

+

∞∑

n=1

n[n + k(n + 1)keiφ − (1 − α)δn,j ] bnzn
∣∣

−

∣∣∣∣∣[1 − (1 + α)δ1,j ]z +

∞∑

n=2

nn[n + (n − 1)keiφ − (1 + α)δn,j ]anzn

−
∞∑

n=1

n[n + k(n + 1)keiφ + (1 + α)δn,j ]bnzn

∣∣∣∣∣

≥ [1 + (1 − α)δ1,j ] | z | −

∞∑

n=2

n[n(k + 1) − k − (1 − α)δn,j ] | an || zn |

−

∞∑

n=1

n[n(k + 1) + k + (1 − α)δn,j ] | bn || zn |

= (2(1 − α)δ1,j) | z |

{
1 −

∞∑

n=2

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
| an || z |n−1

−

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
| bn || z |n−1

}

≥ (2(1 − α)δ1,j) | z |

{
1 −

(
∞∑

n=2

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
| an |

+

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
| bn |

)}
≥ 0

by (2.1). The harmonic functions

f(z) = z +

∞∑

n=1

(1 − αδ1,j)

n[n(k + 1) − k − αδn,j ]
|an| +

∞∑

n=1

(1 − αδ1,j)

n[n(k + 1) + k + αδn,j ]
|bn| ≤ 2, (2.4)



On (j, m) Symmetric Convex Harmonic Functions 19

where
∞∑

n=1

|xn| +

∞∑

n=1

|yn| = 2,

show that the coefficient bound given in Theorem 2.1 is sharp. The functions of the form (2.4)

are in HCV j,m(k, α) because

∞∑

n=1

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
| an | +

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
| bn |

=

∞∑

n=1

|xn| +

∞∑

n=1

|yn| = 2. (2.5)

This completes the proof. 2
If j = m = 1 we get the following result proved by Yong Chan Kim et al in [7].

Corollary 2.2 Let f = h + g of the form (??). If 0 ≤ k < ∞, 0 ≤ α < 1 and

∞∑

n=1

n(n + nk − k − α)

(1 − α)
|an| +

∞∑

n=1

n(n + nk + k + α)

(1 − α)
|bn| ≤ 2,

then f is harmonic, sense- preserving, univalent in U , and f ∈ HCV (k, α).

Now we show that the bound (2.1) is also necessary for functions in HCV (k, α).

Theorem 2.3 Let f = h+ g of the form (1.2) and fj,m = hj,m + gj,m with hj,m and gj,m given

by (1.8). Then f ∈ HCV j,m(k, α) if and only if

∞∑

n=1

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
| an | +

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
| bn |≤ 2 (2.6)

where 0 ≤ k < ∞, 0 ≤ α < 1, m = 1, 2, 3, · · · , j = 0, 1, 2, · · · , m − 1, and δn,j given by (1.5).

Proof In view of Theorem 2.3, we only need to show that HCV j,m(k, α) if condition (2.6)

does not hold. We note that a necessary and sufficient condition for f = h+ g of the form (1.1)

to be satisfied. Equivalently, we must have

Re

{
A(z)

B(z)
− α

}

= Re

{
zh′(z) + (1 + keiφ)z2h′′(z) + (1 + 2keiφ)(zg′(z)) + (1 + keiφ)(z2g′′(z))

zh′
j,k(z) − zg′j,k(z)

− α

}
≥ 0.

Therefore,

Re

{
(1 − δ1,jα)z −

∑∞
n=2 n[n(k + 1) − k − αδn,j ]|an|zn +

∑∞
n=1 n[n(k + 1) + k + αδn,j ]|bn|zn

δ1,jz −
∑∞
n=2 nδn,j |an|zn +

∑∞
n=1 nδn,j |bn|zn

}
≥ 0 (2.7)

upon choosing the value of z on the positive real axis where 0 ≤ z = r < 1 the above inequality
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reduces to

(1 − δ1,jα) −
{∑∞

n=2 n[n(k + 1) − k − αδn,j ]|an| +
∑∞
n=1 n[n(k + 1) + k + αδn,j ]|bn|

}
rn−1

δ1,j −
∑∞
n=2 nδn,j |an|rn−1 +

∑∞
n=1 nδn,j |bn|rn−1

≥ 0. (2.8)

If condition (2.6) does not hold then the numerator in (2.8) is negative for r sufficiently

close to 1. Thus there exists z0 = r0 in (0,1) for which the quotient (2.8) is negative. This

contradicts the required condition for f ∈ HCV j,m(k, α)and so proof is complete. 2
§3. Extreme Points and Distortion Bounds

Theorem 3.1 Let f be of the form of (1.2). Then f ∈ clcoHCV (k, α) if and only if f(z) =∑∞
n=1 (τnhn(z) + λngn(z)) where h1(z) = z, hn(z) = z −

(1−αδ1,j)
n[n(k+1)−k−αδn,j ]z

n, (n = 2, 3, 4, · · · , )

and gn(z) = z−
(1−αδ1,j)

n[n(k+1)+k+αδn,j ] z̄
n, (n = 1, 2, 3, · · · , ),

∑∞
n=1 (τn + λn) = 1, τn ≥ 0 and λn ≥ 0,

In particular, the extreme points of HCV j,m(k, α) are {hn}and{gn}, and δn,j given by (1.5).

Proof For functions of f of the form f(z) =
∑∞

n=1 (τnhn(z) + λngn(z)) , we have

f(z) =

∞∑

n=1

(τn + λn) z −

∞∑

n=2

(1 − αδ1,j)

n[n(k + 1) − k − αδn,j ]
τnzn

−

∞∑

n=1

(1 − αδ1,j)

n[n(k + 1) + k + αδn,j ]
λnz−n = z −

∞∑

n=2

anzn −

∞∑

n=1

bnz−n. (3.1)

Therefore,

∞∑

n=1

n[n(k + 1) − k − αδn,j ]

(1 − αδ1,j)
|an|+

∞∑

n=1

n[n(k + 1) + k + αδn,j ]

(1 − αδ1,j)
|bn| =

∞∑

n=2

τn +

∞∑

n=1

λn = 1−τ1 ≤ 1

and so f ∈ HCV j,m(k, α).

Conversely, Suppose that f ∈ HCV j,m(k, α). We set τn =
n[n(k+1)−k−αδn,j ]

(1−αδ1,j) |an|, n =

2, 3, 4, · · · , λn =
n[n(k+1)+k+αδn,j ]

(1−αδ1,j) |bn|, n = 1, 2, 3, · · · , and τ1 = 1−
∑∞

n=2 τn −
∑∞

n=1 λn. Then∑∞
n=1 (τn + λn) = 1, 0 ≤ τn ≤ 1, 0 ≤ λn ≤ 1, (n = 1, 2, 3, · · · , ) thus by simple calculations we

get f(z) =
∑∞

n=1 (τnhn(z) + λngn(z)) and the proof is complete. 2
Theorem 3.2 If f ∈ HCV j,m(k, α) then

|f(z) ≤ (1 + |b1|)r +
1

2

[
1 − αδ1,j

k + 2 − αδ2,j
−

1 + 2k + αδ1,j

k + 2 − αδ2,j
|b1|

]
r2, |z| = r < 1

and

|f(z) ≥ (1 − |b1|)r −
1

2

[
1 − αδ1,j

k + 2 − αδ2,j
−

1 + 2k + αδ1,j

k + 2 − αδ2,j
|b1|

]
r2, |z| = r < 1

where 0 ≤ α < 1, and δn,j given by (1.5).
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Proof Calculation shows that

|f(z)| ≤ (1 + |b1|)r +

∞∑

n=2

(|an| + |bn|)r
n ≤ (1 + |b1|)r +

∞∑

n=2

(|an| + |bn|)r
2

≤ (1 + |b1|)r

+
1 − αδ1,j

2[(k + 2) − αδ2,j ]

{
∞∑

n=2

2[(k + 2) − αδ2,j ]

1 − αδ1,j
|an| +

∞∑

n=2

2[(k + 2) − αδ2,j ]

1 − αδ1,j
|bn|

}
r2

≤ (1 + |b1|)r +
1 − αδ1,j

2[(k + 2) − αδ2,j ]

{
∞∑

n=2

n[n(k + 1) − k − αδn,j ]

1 − αδ1,j
|an|

+

∞∑

n=2

n[n(k + 1) + k + αδn,j ]

1 − αδ1,j
|bn|

}
r2

≤ (1 + |b1|)r +
1 − αδ1,j

2[(k + 2) − αδ2,j ]

{
1 −

1 + 2k + αδ1,j

1 − αδ1,j
|b1|

}
r2

≤ (1 + |b1|)r +
1

2

[
1 − αδ1,j

k + 2 − αδ2,j
−

1 + 2k + αδ1,j

k + 2 − αδ2,j
|b1|

]
r2

and

|f(z)| ≥ (1 + |b1|)r −
∞∑

n=2

(|an| + |bn|)r
n ≥ (1 + |b1|)r −

∞∑

n=2

(|an| + |bn|)r
2

≥ (1 − |b1|)r

−
1 − αδ1,j

2[(k + 2) − αδ2,j ]

{
∞∑

n=2

2[(k + 2) − αδ2,j ]

1 − αδ1,j
|an| +

∞∑

n=2

2[(k + 2) − αδ2,j ]

1 − αδ1,j
|bn|

}
r2

≥ (1 − |b1|)r −
1 − αδ1,j

2[(k + 2) − αδ1,j ]

{
∞∑

n=2

n[n(k + 1) − k − αδn,j ]

1 − αδ1,j
|an|

+

∞∑

n=2

n[n(k + 1) + k + αδn,j ]

1 − αδ1,j
|bn|

}
r2

≥ (1 − |b1|)r −
1 − αδ1,j

2[(k + 2) − αδ2,j ]

{
1 −

1 + 2k + αδ1,j

1 − αδ1,j
|b1|

}
|b1|r

2

≥ (1 − |b1|)r −
1

2

[
1 − αδ2,j

k + 2 − αδ2,j
−

1 + 2k + αδ1,j

k + 2 − αδ2,j
|b1|

]
r2.

This completes the proof. 2
If j = m = 1 we get the following result proved by Yong Chan Kim et al. in [7]

Corollary 3.3 If f ∈ HCV (k, α) then

|f(z) ≤ (1 + |b1|)r +
1

2

[
1 − α

k + 2 − α
−

1 + 2k + α

k + 2 − α
|b1|

]
r2, |z| = r < 1

and

|f(z) ≥ (1 − |b1|)r −
1

2

[
1 − α

k + 2 − α
−

1 + 2k + α

k + 2 − α
|b1|

]
r2, |z| = r < 1.
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§1. Introduction

In 2003, Shaikh [18] introduced and studied Lorentzian concircular structure manifolds (briefly

(LCS)n-manifolds) with an example, which generalizes the notion of LP-Sasakian manifolds

introduced by Matsumoto [11]. Also Shaikh et al. ([19,20,21,22]), Prakasha [16], Yadav [29]

studied various types of (LCS)n-manifolds by imposing curvature restrictions.

In 1926, the concept of local symmetry of a Riemannian manifold was started by Cartan

[3]. This notion has been used in several directions by many authors such as recurrent manifolds

by Walker [28], semi-symmetric manifold by Szabo [24], pseudosymmetric manifold by Chaki

[4], pseudosymmetric spaces by Deszcz [10], weakly symmetric manifold by Tamassy and Binh

[26], weakly symmetric Riemannian spaces by Selberg [17]. The notions of pseudo-symmetric

and weak symmetry by Chaki and Deszcz and Selberge and Tamassy and Binh respectively

are different. As a mild version of local symmetry, Takahashi [25] introduced the notion of φ-

symmetry on a Sasakian manifold. In 2003, De et al. [7] introduced the concept of φ-recurrent

Sasakian manifold, which generalizes the notion of φ-symmetry.

In 1971, Pokhariyal and Mishra [15] defined a tensor field W ∗ on a Riemannian manifold

given by

W ∗(X, Y )Z = R(X, Y )Z −
1

2(n − 1)
[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX

−g(X, Z)QY ]. (1.1)

1Supported by Rajiv Gandhi National Fellowship F1-17.1/2015-16/RGNF-2015-17-SC-KAR-26367.
2Received December 09, 2018, Accepted May 21, 2019.
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Such a tensor field W ∗ is known as M -projective curvature tensor. Ojha [13,14] studied M -

projective curvature tensor on Sasakian and Kaehler manifold. The properties of M -projective

curvature tensor were also studied on different manifolds by Chaubey [5,6], Venkatesha [27] and

others.

Motivated by the above studies, we made an attempt to study M -projective curvature

tensor on (LCS)n-manifold.

The present paper is organized as follows: Section 2 is equipped with some preliminaries of

(LCS)n manifold. In section 3, we proved that if (Mn, g) is an n-dimensional φ-M -projective

flat (LCS)n-manifold, then the manifold Mn is η-Einstein manifold. We have shown that if

an n-dimensional (LCS)n-manifold Mn is M -projective pseudosymmetric then either LW∗ =

(α2 − ρ) or the manifold is Einstein manifold, provided (α2 − ρ) 6= 0, in section 4. Section 5

deals with the study of φ-M -projective semisymmetric (LCS)n-manifold and proved that the

manifold is generalized η-Einstein manifold, provided (α2 − ρ) 6= 0. In the last section, we have

studied generalized M -projective φ-recurrent (LCS)n-manifold and gave the relations between

the associated 1-forms A and B.

§2. Preliminaries

An n-dimensional Lorentzian manifold Mn is a smooth connected para-compact Hausdorff

manifold with a Lorentzian metric g of type (0, 2) such that for each point p ∈ M , the tensor

gp : Tp(M
n) × Tp(M

n) → R is a non-degenerate inner product of signature (−, +, +, · · · , +),

where Tp(M
n) denotes the tangent space of Mn at p and R is the real number space [18,12].

In a Lorentzian manifold (Mn, g), a vector field P defined by

g(X, P ) = A(X),

for any vector field X ∈ χ(Mn), (χ(Mn) being the Lie algebra of vector fields on Mn) is said

to be a concircular vector field [23] if

(∇XA)(Y ) = α[g(X, Y ) + ω(X)A(Y )],

where α is a non-zero scalar function, A is a 1-form and ω is a closed 1-form.

Let Mn be a Lorentzian manifold admitting a unit time like concircular vector field ξ,

called the characteristic vector field of the manifold. Then we have

g(ξ, ξ) = −1. (2.1)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that for

g(X, ξ) = η(X), (2.2)
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the equation of the following form holds

(∇Xη)(Y ) = α[g(X, Y ) + η(X)η(Y )], (α 6= 0) (2.3)

for all vector fields X and Y . Here ∇ denotes the operator of covariant differentiation with

respect to the Lorentzian metric g and α is a non zero scalar function satisfying

(∇Xα) = (Xα) = dα(X) = ρη(X), (2.4)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φX =
1

α
∇Xξ, (2.5)

then from (2.3) and (2.5) we have

φ2X = X + η(X)ξ, (2.6)

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (2.7)

from which it follows that φ is a symmetric (1, 1) tensor, called the structure tensor of the

manifold. Thus the Lorentzian manifold M together with the unit timelike concircular vector

field ξ, its associated 1-form η and (1, 1) tensor field φ is said to be a Lorentzian concircular

structure manifold (briefly (LCS)n-manifold) [18]. Especially, if we take α = 1, then we obtain

the LP-Sasakian structure of Matsumoto [11].

In a (LCS)n-manifold, the following relations hold [18]:

η(R(X, Y )Z) = (α2 − ρ)[g(Y, Z)η(X) − g(X, Z)η(Y )], (2.8)

R(X, Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.9)

R(X, ξ)Z = (α2 − ρ)[η(Z)X − g(X, Z)ξ], (2.10)

R(ξ, X)Y = (α2 − ρ)[g(X, Y )ξ − η(Y )X ], (2.11)

R(ξ, X)ξ = (α2 − ρ)[X + η(X)ξ], (2.12)

S(X, ξ) = (n − 1)(α2 − ρ)η(X), Qξ = (n − 1)(α2 − ρ)ξ, (2.13)

(∇Xφ)(Y ) = α[g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X ], (2.14)

S(φX, φY ) = S(X, Y ) + (n − 1)(α2 − ρ)η(X)η(Y ) (2.15)

for all vector fields X, Y, Z and R, S respectively denotes the curvature tensor and the Ricci

tensor of the manifold.

A (LCS)n manifold Mn is said to be a generalized η-Einstein manifold [30] if the following

condition

S(X, Y ) = λg(X, Y ) + µη(X)η(Y ) + νΩ(X, Y ) (2.16)
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holds on Mn. Here λ, µ and ν are smooth functions and Ω(X, Y ) = g(φX, Y ). If ν = 0 then

the manifold reduces to an η-Einstein manifold.

From (1.1), we have

η(W ∗(ξ, Y )Z) =
1

2(n − 1)
S(Y, Z) −

1

2
g(Y, Z), (2.17)

η(W ∗(X, ξ)Z) = −
1

2(n − 1)
S(X, Z) −

3

2
(α2 − ρ)g(X, Z), (2.18)

η(W ∗(X, Y )ξ) = 0, (2.19)

W ∗(X, Y )ξ = 0, W ∗(X, ξ)ξ = 0, W ∗(ξ, ξ)Z = 0, (2.20)

W ∗(X, ξ, Z, T ) =
1

2(n − 1)
S(X, Z)η(T ) −

1

2(n − 1)
S(X, T )η(Z)

+
1

2
(α2 − ρ)g(X, T )η(Z)−

1

2
(α2 − ρ)g(X, Z)η(T ), (2.21)

W ∗(X, ξ, Z, ξ) = −
1

2(n− 1)
S(X, Z) +

1

2
(α2 − ρ)g(X, Z), (2.22)

W ∗(X, ξ)Z =
1

2(n − 1)
S(X, Z)ξ −

1

2
(α2 − ρ)g(X, Z)ξ, (2.23)

(∇US)(X, ξ) = (n − 1)α(α2 − ρ)[g(U, X) + η(U)η(X)] − αS(X, φU). (2.24)

§3. φ-M-projectively Flat (LCS)n-Manifold

Definition 3.1 An n-dimensional (LCS)n-manifold (Mn, g), (n > 3) is called φ-M -projective

flat if it satisfies the condition

φ2W ∗(φX, φY )φZ = 0, (3.1)

for all vector fields X, Y, Z on the manifold.

Theorem 3.1 If (Mn, g) is an n-dimensional φ-M -projective flat (LCS)n-manifold, then the

manifold Mn is η-Einstein manifold.

Proof Let Mn be φ-M -projective flat. It is easy to define that φ2(W ∗(φX, φY )φZ) = 0

holds if and only if

g(W ∗(φX, φY )φZ, φU) = 0, (3.2)

for any vector fields X, Y, Z, U ∈ TMn.

By virtue of (1.1) and (3.2), one can obtain

g(R(φX, φY )φZ, φU) =
1

2(n − 1)
[S(φY, φZ)g(φX, φU) − S(φX, φZ)g(φY, φU)

+g(φY, φZ)S(φX, φU) − g(φX, φZ)S(φY, φU)]. (3.3)
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Let {e1, e2, · · · , en−1, ξ} be a local orthonormal basis of vector fields in Mn. By using the fact

that {φe1, φe2, · · · , φen−1, ξ} is also a local orthonormal basis, if we put X = U = ei in (3.3)

and sum up with respect to i, we get

n−1∑

i=1

g(R(φei, φY )φZ, φei) =
1

2(n − 1)

n−1∑

i=1

[S(φY, φZ)g(φei, φei)

−S(φei, φZ)g(φY, φei) + g(φY, φZ)S(φei, φei)

−g(φei, φZ)S(φY, φei)]. (3.4)

It can be easily verify by a straight forward calculation that [1],

n−1∑

i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ) + g(φY, φZ), (3.5)

n−1∑

i=1

S(φei, φei) = r − (n − 1)(α2 − ρ), (3.6)

n−1∑

i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (3.7)

n−1∑

i=1

g(φei, φei) = (n − 1) (3.8)

and
n−1∑

i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (3.9)

By virtue of (3.5) - (3.8), the equation (3.4) becomes

S(φY, φZ) = {
r − (n − 1)(α2 − ρ) − 2(n − 1)

n + 1
}g(φY, φZ). (3.10)

On substituting (2.7) and (2.15), (3.10) yields

S(Y, Z) = k1g(Y, Z) + k2η(Y )η(Z), (3.11)

where k1 = { r−(n−1)(α2−ρ)−2(n−1)
n+1 } and k2 = { r−2(n−1)−(n−1)(n+1)(α2−ρ)

n+1 }. Thus we proved the

theorem. 2
§4. M-Projective Pseudosymmetric (LCS)n-Manifold

Definition 4.1 An (LCS)n-manifold (Mn, g) (n > 3) is said to be M -projective pseudosym-

metric if it satisfies

(R(X, Y ) · W ∗)(U, V )E = LW∗((X ∧ Y ) · W ∗)(U, V )E, (4.1)
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for any vector fields X, Y, U, V, E ∈ TMn.

Theorem 4.2 If an n-dimensional (LCS)n-manifold Mn is M -projective pseudosymmetric

then either LW∗ = (α2 − ρ) or the manifold is Einstein manifold, provided (α2 − ρ) 6= 0.

Proof Let Mn be M -projective pseudosymmetric. Putting Y = ξ in (4.1), we get

(R(X, ξ) · W ∗)(U, V )E = LW∗ [(X ∧ ξ)W ∗(U, V )E − W ∗((X ∧ ξ)U, V )E

−W ∗(U, (X ∧ ξ)V )E − W ∗(U, V )(X ∧ ξ)E]. (4.2)

Now the left hand side of (4.2) reduces to

R(X, ξ) · W ∗(U, V )E − W ∗(R(X, ξ)U, V )E − W ∗(U, R(X, ξ)V )E − W ∗(U, V )R(X, ξ)E. (4.3)

In view of (2.10), (4.3) becomes

(α2 − ρ)[W ∗(U, V, E, ξ)X − W ∗(U, V, E, X)ξ − η(U)W ∗(X, V )E + g(X, U)W ∗(ξ, V )E

−η(V )W ∗(U, X)E + g(X, V )W ∗(U, ξ)E − η(T )W ∗(U, V )X + g(X, E)W ∗(U, V )ξ]. (4.4)

Similarly, right hand side of (4.2) reduces to

LW∗ [W ∗(U, V, E, ξ)X − W ∗(U, V, E, X)ξ − η(U)W ∗(X, V )E + g(X, U)W ∗(ξ, V )E

−η(V )W ∗(U, X)E + g(X, V )W ∗(U, ξ)E − η(E)W ∗(U, V )X + g(X, E)W ∗(U, V )ξ]. (4.5)

On replacing the expressions (4.4) and (4.5) in (4.2), we get

[LW∗ − (α2 − ρ)]{W ∗(U, V, E, ξ)X − W ∗(U, V, E, X)ξ − η(U)W ∗(X, V )E

+g(X, U)W ∗(ξ, V )E − η(V )W ∗(U, X)E + g(X, V )W ∗(U, ξ)E − η(E)W ∗(U, V )X

+g(X, E)W ∗(U, V )ξ} = 0. (4.6)

Taking V = ξ and using (2.2) and (2.7) in the above equation, we obtain

[LW∗ − (α2 − ρ)]{W ∗(U, ξ, E, ξ)X − W ∗(U, ξ, E, X)ξ − η(U)W ∗(X, ξ)E

+g(X, U)W ∗(ξ, ξ)E + W ∗(U, X)E + η(X)W ∗(U, ξ)E − η(E)W ∗(U, ξ)X

+g(X, E)W ∗(U, ξ)ξ} = 0. (4.7)

On using (2.21) - (2.23), (4.7) gives either LW∗ = (α2 − ρ) or

W ∗(U, X)E =
1

2(n − 1)
S(U, E)X +

1

2(n − 1)
S(X, E)η(U)ξ

−
1

2
(α2 − ρ)g(U, E)X −

1

2
(α2 − ρ)g(X, E)η(U)ξ. (4.8)
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The above equation implies

W ∗(U, X, E, G) =
1

2(n − 1)
S(U, E)g(X, G) +

1

2(n − 1)
S(X, E)η(U)η(G)

−
1

2
(α2 − ρ)g(U, E)g(X, G) −

1

2
(α2 − ρ)g(X, E)η(U)η(G). (4.9)

Contracting (4.9) gives

W ∗(ei, X, E, ei) = 0. (4.10)

Simplifying (4.10), we finally obtain

S(X, E) = (n − 1)(α2 − ρ)g(X, E). (4.11)

Thus the proof of the theorem is completed. 2
§5. φ-M-Projectively Semisymmetric (LCS)n-Manifold

Definition 5.1 An n-dimensional (n > 3) (LCS)n-manifold is said to be φ-M -projective

semisymmetric if it satisfies the condition

W ∗(X, Y ) · φ = 0, (5.1)

which turns into

(W ∗(X, Y ) · φ)Z = W ∗(X, Y )φZ − φW ∗(X, Y )Z = 0. (5.2)

Before we state our theorem we need the following lemma which was proved in [19].

Lemma 5.2([19]) If Mn is an (LCS)n-manifold, then for any X, Y, Z on Mn, the following

relation holds:

R(X, Y )φZ − φR(X, Y )Z = (α2 − ρ)[{g(Y, Z)η(X)− g(X, Z)η(Y )}ξ

+η(Z){η(X)Y − η(Y )X}]. (5.3)

Theorem 5.3 If an n-dimensional (LCS)n-manifold is φ-M -projective semisymmetric then it

is a generalized η-Einstein manifold, provided (α2 − ρ) 6= 0.

Proof By virtue of (1.1), we have

W ∗(X,Y )φZ − φW ∗(X,Y )Z = R(X,Y )φZ − φR(X,Y )Z − 1

2(n− 1)
[S(Y, φZ)X

−S(X,φZ)Y + g(Y,φZ)QX − g(X,φZ)QY

+S(Y,Z)φX − S(X,Z)φY + g(Y,Z)φQX − g(X,Z)φQY ]. (5.4)
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On using (2.13) and (5.3) in (5.4), we obtain

(α2 − ρ)[{g(Y, Z)η(X) − g(X, Z)η(Y )}ξ + η(Z){η(X)Y − η(Y )X}]

−
1

2(n − 1)
[S(Y, φZ)X − S(X, φZ)Y + (n − 1)(α2 − ρ)g(Y, φZ)X

−(n − 1)(α2 − ρ)g(X, φZ)Y + S(Y, Z)φX − S(X, Z)φY

+(n − 1)(α2 − ρ)g(Y, Z)φX − (n − 1)(α2 − ρ)g(X, Z)φY ] = 0. (5.5)

Taking inner product of (5.5) with T , we get

(α2 − ρ)[{g(Y, Z)η(X) − g(X, Z)η(Y )}η(T ) + η(Z){η(X)g(Y, T )− η(Y )g(X, T )}]

−
1

2(n− 1)
[S(Y, φZ)g(X, T ) − S(X, φZ)g(Y, T ) + (n − 1)(α2 − ρ)g(Y, φZ)g(X, T )

−(n − 1)(α2 − ρ)g(X, φZ)g(Y, T ) + S(Y, Z)g(φX, T )− S(X, Z)g(φY, T )

+(n − 1)(α2 − ρ)g(Y, Z)g(φX, T ) − (n − 1)(α2 − ρ)g(X, Z)g(φY, T )] = 0. (5.6)

Contracting (5.6) gives

S(X, φZ) =
(n − 1)(n − 2)

(2 − n)
(α2 − ρ)g(X, φZ) +

2(n − 1)

(2 − n)
(α2 − ρ)g(X, Z)

+
2n(n− 1)

(2 − n)
(α2 − ρ)η(X)η(Z). (5.7)

Replacing X by φX in the above equation, we finally obtain

S(X, Z) = λg(X, Z) + µη(X)η(Z) + νg(φX, Z), (5.8)

where λ = −(n − 1)(α2 − ρ), µ = −2(n − 1)(α2 − ρ) and ν = − 2(n−1)
(n−2) .

This completes the proof. 2
§6. Generalized M-Projective φ-Recurrent (LCS)n-Manifold

In 2008, Basari and Murathan [2] introduced generalized φ-recurrent Kenmotsu manifold. Later,

De [8] and Pal [9] studied generalized concircularly recurrent and generalized M -projectively

recurrent Riemannian manifold.

Definition 6.1 A (LCS)n-manifold Mn (n > 3) is said to be generalized M -projective φ-

recurrent if it satisfies

φ2((∇UW ∗)(X, Y, Z)) = A(U)W ∗(X, Y )Z + B(U)[g(Y, Z)X − g(X, Z)Y ], (6.1)

where A and B are two 1-forms, B is non-zero and are defined by A(U) = g(U, ρ1) and B(U) =

g(U, ρ2). Here ρ1 and ρ2 are vector fields associated to the 1-forms A and B respectively.
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Theorem 6.2 If the (LCS)n-manifold Mn is generalized M -projective φ-recurrent, then the

associated 1-forms A and B are related as follows;

[
n

2
(α2 − ρ) + r]A(U) + (n − 1)B(U) +

1

2(n − 1)
dr(U) = 0. (6.2)

Proof Suppose that Mn is generalized M -projective φ-recurrent (LCS)n-manifold. Then,

by using (2.6), (6.1) takes the form

(∇UW
∗)(X,Y )Z + η((∇UW

∗)(X,Y )Z)ξ = A(U)W ∗(X,Y )Z +B(U)[g(Y,Z)X − g(X,Z)Y ]. (6.3)

From (6.3), it follows that

g((∇UW ∗)(X, Y, Z), T ) + g((∇UW ∗)(X, Y, Z), ξ)g(T, ξ)

−
1

2(n − 1)
[(∇US)(Y, Z)g(X, T )− (∇US)(X, Z)g(Y, T ) + g(Y, Z)(∇US)(X, T )

−g(X, Z)(∇US)(Y, T )] −
1

2(n − 1)
[(∇US)(Y, Z)η(X) − (∇US)(X, Z)η(Y )

+g(Y, Z)(∇US)(X, ξ) − g(X, Z)(∇US)(Y, ξ)]η(T ) = A(U)[g(R(X, Y )Z, T )

−
1

2(n − 1)
{S(Y, Z)g(X, T )− S(X, Z)g(Y, T ) + g(Y, Z)S(X, T )− g(X, Z)S(Y, T )}]

+B(U)[g(Y, Z)g(X, T )− g(X, Z)g(Y, T )]. (6.4)

On contraction, the above equation yields

(∇US)(Y, Z) + η((∇UR)(ξ, Y, Z)) −
1

2(n − 1)
[(n − 2)(∇US)(Y, Z)

+dr(U)g(Y, Z)] −
1

2(n − 1)
[−(∇US)(Y, Z) − (∇US)(Z, ξ)η(Y ) + g(Y, Z)(∇US)(ξ, ξ)

−(∇US)(Y, ξ)η(Z)] = A(U)[S(Y, Z) −
1

2(n − 1)
{(n − 2)S(Y, Z) + rg(Y, Z)}]

+(n − 1)B(U)g(Y, Z). (6.5)

In (6.5), setting Z = ξ and then using (2.2), (2.3), (2.7), (2.12) and (2.13) one can get

(∇US)(Y, ξ)[1 −
n − 2

2(n − 1)
] −

dr(U)

2(n − 1)
η(U) = A(U)[S(Y, ξ)

−
1

2(n − 1)
{(n − 2)S(Y, ξ) + rη(Y )}] + (n − 1)B(U)η(Y ). (6.6)

Now, taking Y = ξ in (6.6) and using (2.2), (2.7) and (2.24), we finally obtain (6.2). 2
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§1. Introduction

The notion of Lorentzian almost para-contact manifolds was introduced by K. Matsumoto [3].

Later on, a large number of geometers studied Lorentzian almost para-contact manifold and

their different classes, viz., Lorentzian para-Sasakian manifolds and Lorentzian special para-

Sasakian manifolds [4], [5], [6], [7]. In brief, Lorentzian para-Sasakian manifolds are called LP-

Sasakian manifolds. The study of LP-Sasakian manifolds has vast applications in the theory of

relativity.

In an n-dimensional differentiable manifold M , (φ, ξ, η) is said to be an almost paracontact

structure if it admits a (1, 1) tensor field φ , a timelike contravariant vector field ξ and a 1-form

η which satisfy the relations:

η(ξ) = −1, (1.1)

φ2X = X + η(X)ξ, (1.2)

for any vector field X on M . In an n-dimensional almost paracontact manifold with structure

(φ, ξ, η), the following conditions hold:

φξ = 0, (1.3)

η ◦ φ = 0, (1.4)

rank φ = n − 1. (1.5)

Let Mn be differentiable manifold with an almost paracontact structure (φ, ξ, η). If there

exists a Lorentzian metric which makes ξ a timelike unit vector field, then there exists a

1Received September 11, 2018, Accepted May 24, 2019.
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Lorentzian metric g satisfying

g(X, ξ) = η(X), (1.6)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (1.7)

(∇Xφ)Y = g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (1.8)

for all vector fields X, Y on M̃ [2].

If a differentiable manifold M admits the structure (φ, ξ, η, g) such that g is an associated

Lorentzian metric of the almost paracontact structure (φ, ξ, η, g) then we say that Mn has a

Lorentzian almost paracontact structure (φ, ξ, η, g) and Mn is said to be Lorentzian almost

paracontact manifold (LAP) with structure (φ, ξ, η, g) .

In a LAP-manifold with structure (φ, ξ, η, g) if we put

Ω(X, Y ) = g(φX, Y ), (1.9)

then the tensor field Ω is a symmetric (0, 2) tensor field [?], that is

Ω(X, Y ) = Ω(Y, X), (1.10)

for all vector fields X, Y on Mn. A LAP-manifold with structure (φ, ξ, η, g) is said to be

Lorentzian paracontact manifold if it satisfies

Ω(X, Y ) =
1

2
{(∇Xη)Y + (∇Y η)X} (1.11)

and (φ, ξ, η, g) is said to be Lorentzian paracontact structure. Here ∇ denotes the operator of

covariant differentiation w.r.t the Lorentzian metric g.

In a LP-Sasakian manifold we have the following results from [9]:

∇Xξ = φX, (1.12)

(∇Xη)Y = Ω(X, Y ) = g(φX, Y ), (1.13)

R(X, Y )ξ = η(Y )X − η(X)Y, (1.14)

η(R(X, Y )Z) = g(Y, Z)η(X) − g(X, Z)η(Y ), (1.15)

R(ξ, X)ξ = η(X)ξ − η(ξ)X = X + η(X)ξ, (1.16)

S(X, ξ) = (n − 1)η(X), (1.17)

S(ξ, ξ) = −(n − 1), (1.18)

Qξ = −(n − 1), (1.19)

where R is the curvature tensor of manifold of type (1, 3), S is Ricci tensor of type (0, 2) and Q

being the Ricci operator. An example of a five-dimensional Lorentzian para-Sasakian manifold

has been given by Matsumoto, Mihai and Rosaca in [5].
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§2. D-homothetic Deformations of LP-Sasakian Manifolds

Let M(φ, ξ, η, g) be an Lorentzian almost paracontact structure. By D-homothetic deformation

[8], we mean a change of structure tensors of the form

η = aη, ξ =
1

a
ξ, φ = φ, g = ag + a(a − 1)η ⊗ η,

where a is a positive constant.

Theorem 2.1 Under D-homothetic deformation M(φ, ξ, η, g) is also an LP-Sasakian manifold

M(φ, ξ, η, g).

Proof Calculation shows that

η(ξ) = η(
1

a
ξ) = aη(

1

a
ξ) = η(ξ) = −1,

φ
2
(X) = φ2(X) = X + η(X)ξ,

φ ◦ ξ = φ(
1

a
ξ) = φ(

1

a
ξ) =

1

a
φξ = 0,

η ◦ φ = η(φ(X)) = aη(φ(X)) = 0,

rank φ = rank φ = n − 1,

η(X) = aη(X) = ag(X, ξ),

g(φX, φY ) = g(φX, φY ) = (ag + a(a − 1)η ⊗ η)(φX, φY ) = ag(φX, φY ),

(∇Xφ)Y = (∇Xφ)Y = g(X, Y )ξ + ǫη(Y )X + 2η(X)η(Y )ξ. 2
Theorem 2.2 Under D-homothetic deformation of a LP Sasakian manifold the following

relation holds

(Lξg)(X, Y ) = a(Lξg)(X, Y ),

where Lξ is the Lie derivative.

Proof For an LP-Sasakian manifold we know (Lµg)(X, Y ) = 2g(φX, Y ) since g(φX, Y ) =

g(X, φY ). Under D-homothetic deformation

(Lξg)(X, Y ) = 2g(φX, Y )

= a(Lξg)(X, Y ) + 2(a2 − a)η(φX)η(Y )

= a(Lξg)(X, Y ). 2
§3. D-homothetic Deformations of Curvature Tensors on LP-Sasakian Manifolds

In this section we consider conformally flat LP-Sasakian manifold Mn(φ, ξ, η, g) (n > 3). The
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Weyl conformal curvature tensor C is given by

C(X, Y )Z = R(X, Y )Z −
1

n − 2
[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX

−g(X, Z)QY ] +
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ]. (3.1)

For conformally flat manifold we have C(X, Y )Z = 0. So from (3.1) we have

R(X, Y )Z =
1

n − 2
{S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY }

−
r

(n − 1)(n − 2)
{g(Y, Z)X − g(X, Z)Y }. (3.2)

Putting Z = ξ in (3.2), we obtain from (1.14)

η(Y )X − η(X)Y =
1

n − 2
{S(Y, ξ)X − S(X, ξ)Y + S(Y, ξ)QX − g(X, ξ)QY }

−
r

(n − 1)(n − 2)
{g(Y, ξ)X − g(X, ξ)Y }. (3.3)

Putting Y = ξ in (3.3) we calculate

η(ξ)X − η(X)ξ =
1

n − 2
{S(ξ, ξ)X − S(X, ξ)ξ + S(ξ, ξ)QX − g(X, ξ)Qξ}

−
r

(n − 1)(n − 2)
{g(ξ, ξ)X − g(X, ξ)ξ}. (3.4)

After some steps of calculations we obtain

QX = (−1 +
r

n − 1
)X + (−1 +

r

n − 1
)η(X)ξ − (n − 1)η(X). (3.5)

Taking inner product with Y, above equation can be written as

S(X,Y ) = (1 +
r

n− 1
)g(X,Y ) + (−1 +

r

n− 1
)η(X)g(Y, ξ) − (n− 1)η(X). (3.6)

In view of (3.5), (3.6) equation (3.2) takes the form

R(X,Y )Z = [g(Y,Z)X − g(X,Z)Y ]

[(
−1 +

r

n− 1

)
1

n− 2

+
1

n− 2

(
1 +

r

n− 1

)
− r

(n− 1)(n− 2)

]

+g(Y,Z)η(X)

[
(

r

n− 1
− 1)

1

n− 2
ξ − (n− 1)

]
+ g(X,Z)η(Y )

×
[
(

r

n− 1
− 1)

1

n− 2
ξ − (n− 1)

]
+Xη(Y )

[
(

r

n− 1
− 1)

1

n− 2
η(Z) − n− 1

n− 2

]

+Y η(X)

[
(

r

n− 1
− 1)

1

n− 2
η(Z) − n− 1

n− 2

]
. (3.7)

For a conformally flat LP-Sasakian manifold, R(X,Y )Z is given by the equation (3.7). Again in
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a LP-Sasakian manifold the following relation holds [9]

R(X,Y )φZ = φ(R(X,Y )Z) + 2{η(X)Y − η(Y )X}η(Z) + 2{g(Y,Z)η(X)

−g(X,Z)η(Y )}ξ − g(φX,Z)φY + g(φY,Z)φX − g(Y,Z)X

+g(X,Z)Y. (3.8)

Again, on using equations (1.15), (1.18) and (1.4) in (3.8) we calculate

g(φR(φX,φY )Z, φW ) = g(R(Z,W )φX,φY ).

Using (3.8) and then (1.7), (1.15) in the above equation we obtain

g(φR(φX,φY )Z, φW ) = g(R(X,Y )Z,W ) − g(W,X)η(Z)η(Y ) + g(Z,X)η(W )η(Y )

+2η(Z)η(X)g(W,φY ) − 2η(W )η(X)g(Z,φY ) − g(φZ,X)g(φW,φY )

+g(φW,X)g(φZ,φY ) − g(W,X)g(Z, φY ) + g(Z,X)g(W,φY ). (3.9)

Replacing X,Y by φX and φY respectively in (3.8) and taking inner product with φW we obtain

on using (1.4) and (3.9) we get

g(R(φX,φY )φZ, φW ) = g(R(X,Y )Z,W ) − g(W,X)η(Z)η(Y ) + g(Z,X)η(W )η(Y )

+3g(Y,φW )η(Z)η(X) − 3g(Z, φY )η(W )η(X) + 2g(φW,X)g(Z,Y )

+2g(φW,X)η(Z)η(Y ) − 2g(W,X)g(Z, φY ). (3.10)

Now we shall recall the definition of φ-section. A plane section in the tangent space Tp(M) is

called a φ-section if there exists a unit vector X in TpM orthogonal to ξ such that {X, φX} is an

orthonormal basis of the plane section. Then the sectional curvature

K(X, φX) = g(R(X,φX)X,φX) (3.11)

is called a φ-sectional curvature. A contact metric manifold M(φ, ξ, η, g) is said to be of constant

φ-sectional curvature if at any point P ∈ M , the sectional curvature K(X, φX) is independent of the

choice of non-zero X ∈ Dp, where D denotes the contact distributions of the contact metric manifold

defined by η = 0. The definition is valid for Lorentzian manifolds also [10].

We give the following theorem.

Theorem 3.1 In a LP-Sasakian manifold M(φ, ξ, η, g) the relation (Qφ − φQ)X = 4nφX holds for

any vector field X on M .

Proof Let {Xi, φXi, ξ} (i = 1, 2, · · · ,m) be a local φ−basis at any point of the manifold. Now

putting Y = Z = Xi in (3.10) and taking summation over i, we obtain by virtue of η(Xi) = 0,

ΣφR(φX,φXi)φXi = ΣR(X,Xi)Xi + 2φXg(Xi,Xi). (3.12)

Again setting Y = Z = φXi in (3.10) we have

ΣφR(φX,φ2Xi)φ
2Xi = ΣR(X, φXi)φXi + 2φXg(Xi,Xi). (3.13)
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Adding (3.12) and (3.13) and using the definition of Ricci operator, we calculate

φ(Q(φX) −R(φX, ξ)ξ) = QX −R(X, ξ)ξ + 4nφX. (3.14)

We can write from (1.16)

R(φX, ξ)ξ = φX. (3.15)

Using (3.13) and (3.14)

φ(Q(φX)) = QX + 4nφX. (3.16)

Operating φ on both sides and using (1.17)

Q(φX) − φ(QX) = 4nφX. (3.17)

By virtue of (3.17) theorem (3.1) is proved. 2
For the next proof we consider the symbol W i

jk where W i
jk denotes the difference Γ

i
jk − Γijk of

Christoffel symbols in an LP-Sasakian manifold [8]. In global notation we can write

W (Y,Z) = (1 − a)[η(Z)φY + η(Y )φZ] +
1

2
(1 − 1

a
)[(∇Y η)Z + (∇Zη)Y ]ξ, (3.18)

for all Y,Z ∈ χ(M). We state our next theorem.

Theorem 3.2 Under a D-homothetic deformation, the operator Qφ− φQ of a LP-Sasakian manifold

M(φ, ξ, η, g) is conformal.

Proof If R and R denote the curvature tensors of the LP-Sasakian manifold M(φ, ξ, η, g) and

M(φ, ξ, η, g) respectively then we know from [8]

R(X,Y )Z = R(X,Y )Z + (∇XW )(Z, Y ) − (∇YW )(Z,X)

+W (W (Z,Y ),X) −W (W (Z,X), Y ). (3.19)

Using (1.13) in (3.18) we calculate

W (Y,Z) = (1 − a)[η(Z)φY + η(Y )φZ] + (1 − 1

a
)g(φY,Z)ξ. (3.20)

Taking covariant differentiation w.r.t. X and after using (1.8), (3.2), we obtain,

(∇XW )(Y,Z) = (1 − a)[g(φX,Z)φY + g(X,Y )η(Z)ξ + 2η(Z)η(Y )X

+4η(X)η(Y )η(Z)ξ + g(φX,Y )φZ + g(X,Z)η(Y )ξ]

+(1 − 1

a
)g(φY,Z)φX. (3.21)

Using (3.21) in (3.19) we obtain

R(X,Y )Z = R(X,Y )Z + (1 − a)η(Y )g(X,Z)ξ

+2(1 − a)η(Z)η(Y )X + (1 − a)g(φX,Z)φY + (1 − 1

a
)g(φZ,Y )φX

−(1 − a)g(Y,Z)η(X)ξ

−2(1 − a)η(X)η(Z)Y − (1 − a)g(φY,Z)φX − (1 − 1

a
)g(φZ,X)φY
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+(1 − a)η(Y )[(1 − 1

a
)g(φ2Z,X)ξ] + (1 − a)η(Z)[(1 − a)η(X)φ2Y

+(1 − 1

a
)g(φ2Y,X)ξ] + (1 − 1

a
)g(φZ,X)[−(1 − a)φX]

−(1 − a)η(X)[(1 − 1

a
)g(φ2Z, Y )ξ] − (1 − a)η(Z)[(1 − a)η(Y )φ2X

+(1 − 1

a
)g(φ2X, Y )ξ] − (1 − 1

a
)g(φZ,X)[−(1 − a)φY ]. (3.22)

From (3.22) we get

aS(Y,Z) = S(Y,Z) +
(1 − a)2

a
. (3.23)

Using the properties of Ricci operator

aQY = QY +
(1 − a)2

a
.

Operating φ = φ on both sides from left hand side

aφ QY = φQY +
(1 − a)2

a
.

Operating φ = φ on both sides from right hand side

aQ φY = QφY +
(1 − a)2

a
.

Subtracting the above two equations we obtain

a(φ Q−Q φ) = (φQ−Qφ). (3.24)

The equation (3.24) proves our theorem. 2
We can also prove the following theorems as a consequence of D-homothetic deformation.

Theorem 3.3 Under D-homothetic deformation, an η−Einstein LP-Sasakian manifold remains in-

variant.

Proof In an η-Einstein LP-Sasakian manifold [9]

S(X, Y ) = [
r

n− 1
− 1]g(X,Y ) + [

r

n− 1
− n]η(X)η(Y ).

Under D-homothetic deformation we get

S(X,Y ) = [a(
r

n− 1
− 1)]g(X,Y ) + [a(a− 1)(

r

n− 1
− 1) + a2(

r

n− 1
− n)]η(X)η(Y ).

Hence the result is proved. 2
Theorem 3.4 Under D-homothetic deformation, the φ-sectional curvature of a LP-Sasakian manifold

is conformal.

Proof Putting Y = φX,Z = X in (3.12) and taking inner product with φX, we obtain on using

(1.4) and the orthogonality property we get

ag(R(X,φX)X,φX) = g(R(X,φX)X,φX) + (a− 1

a
) (3.25)
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aK(X,φX) −K(X,φX) = (a− 1

a
). 2

Theorem 3.5 There exists LP-Sasakian manifold with non-zero and non-constant φ-sectional curva-

ture.

Proof If the LP-Sasakian manifold satisfies R(X,Y )ξ = 0, then it can be proved easily that

K(X,φX) = 0 and therefore from (3.25) we can conclude that K(X,φX) 6= 0 for a 6= 1 where X is a

unit vector field orthogonal to ξ. Hence the result is proved. 2
§4. An Example of a LP-Sasakian Manifold

In this section we shall prove the equality (3.25) by taking an example of LP-Sasakian manifold [1]. Let

us consider a 5-dimensional manifold M̃ = {(x, y, z, u, v) ∈ R5 : ((x, y, z, u, v) 6= (0, 0, 0, 0, 0)} where

(x, y, z, u, v) are the standard coordinate in R5. The vector fields

e1 = −2
∂

∂x
+ 2y

∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
, e4 = −2

∂

∂u
+ 2v

∂

∂z
, e5 =

∂

∂v

are linearly independent at each point of M . Let g be the Lorentzian metric defined by

g(ei, ej) = 1, for i = j 6= 3,

g(ei, ej) = 0, for i 6= j,

g(e3, e3) = −1.

Here i and j runs from 1 to 5. Let η be the 1-form defined by η(Z) = g(Z, e3), for any vector field Z

tangent to M̃ . Let φ be the (1, 1) tensor field defined by

φe1 = e2, φe2 = e1, φe3 = 0, φe4 = e5, φe5 = e4.

Then using the linearity of φ and g we have

η(e3) = −1, φ2Z = Z + η(Z)e3,

for any vector fields Z,W tangent to M̃ . Thus for e3 = ξ, M̃(φ, ξ, η, g) forms a LP-Sasakian manifold.

Let ∇ be the Levi-Civita connection on M̃ with respect to the metric g. Then the followings can

be obtained

[e1, e2] = −2e3, [e1, e3] = 0, [e2, e3] = 0.

On taking e3 = ξ and using Koszul’s formula for the metric g, we calculate

∇e1e3 = e2, ∇e1e2 = −e3, ∇e1e1 = 0,

∇e2e3 = e1, ∇e2e2 = 0, ∇e2e1 = e3,

∇e3e3 = 0, ∇e3e2 = e1, ∇e3e1 = e2.

Using the above relations, we can easily calculate the non-vanishing components of the curvature
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tensor as follows:

R(e1, e2)e2 = 3e1, R(e1, e2)e1 = 3e2, R(e2, e3)e3 = −e2,
R(e1, e3)e2 = 0, R(e1, e3)e1 = −e3, R(e2, e3)e2 = e3,

R(e1, e2)e3 = 0.

In equation (3.22) we put X = e1, Y = φe1, Z = e1. Taking inner product with φe1 we obtain

aK(e1, φe1) −K(e1, φe1) = a− 1

a
.

Hence, by this example Theorem 3.4 is verified.
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Abstract: In literature, there are three affine frames commonly used for space curves, which

are called equi-affine frame, Winternitz frame and intrinsic affine frame, respectively. In this

study, we examined the position vectors of the space curves in affine 3-space for each of these

three frames separately, in terms of lying in the planes {T,N}, {T,B} and {N,B} which are

known as osculating, rectifying and normal planes, respectively and we obtained the position

vectors and we gave some conclusions.
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§1. Introduction

Affine differential geometry is the study of differential invariants with respect to the group of affine

transformation. The group of affine motions special linear transformation namely the group of equi-

affine or unimodular transformations consist of volume preserving (det(ajk) = 1) linear transformations

together with translation such that

x∗
j =

3∑

k=1

ajkxk + cj j = 1, 2, 3

This transformations group denoted by ASL(3, IR) := SL(3, IR) × IR3 and comprising diffeomor-

phisms of IR3 that preserve some important invariants such curvatures that in curve theory as well.

An equi-affine group is also called an Euclidean group [3].

Salkowski and Schells gave the equi-affine frame [4], Kreyszig and Pendl gave the characterization

of spherical curves in both Euclidean and affine 3-spaces [3]. Su classified the curves in affine 3-space by

using equi-affine frame [6]. Winternitz dwelled on the insufficiency of equi-affine frame for curves class

of C5 and defined the new frame known as Winternitz frame [5,1]. Davis obtained new affine frame by

defining intrinsic affine binormal and in this study, we called that frame as intrinsic affine frame [2].

A set of points that corresponds to a vector of vector space constructed on a field is called an

affine space associated with vector space. We denote A3 as affine 3-space associated with IR3. Let

α : J −→ A3

represent a curve in A3, where t ∈ J = (t1, t2) ⊂ IR is fixed and open interval. Regularity of a curve

1Received November 03, 2018, Accepted May 25, 2019.
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in A3 is defined as
∣∣∣ .
α

..
α

...
α

∣∣∣ 6= 0 on J , where
.
α = dα/dt, etc. Then, we may associate α with the

invariant parameter

s = σ(t) =

t∫

t1

∣∣∣ .
α

..
α

...
α

∣∣∣
1/6

dt

which is called the affine arc length of α(s). The coordinates of a curve are given by three linearly

independent solutions of the equations

α(iv) (s) + k (s)α′′ (s) + τα (s)α′ (s) = 0 (1)

under the condition ∣∣∣ α′ (s) α′′ (s) α′′′ (s)

∣∣∣ = 1 (2)

where k (s) and τα (s) are differentiable functions of s.

§2. Position Vectors of the Curves in Affine 3-Space According to

Equi-Affine Frame

Let α (s) be a regular curve with affine arc lengh parameter s. The vectors α′ (s) , α′′ (s) and α′′′ (s) are

called tangent, affine normal and affine binormal vectors respectively, and the planes sp {α′ (s) , α′′ (s)} ,
sp {α′ (s) , α′′′ (s)} and sp {α′′ (s) , α′′′ (s)} are called osculating, rectifying and normal planes of the

curve α (s) . Thus, the frame





T ′(s) = N(s),

N ′(s) = B(s),

B′(s) = −τα(s)T (s)− k(s)N(s)

(3)

is called equi-affine frame, where k(s) and τα(s) are called equi-affine curvature and equi-affine torsion,

which are given as follow

k(s) =
∣∣∣ α′ (s) α′′′ (s) α(iv) (s)

∣∣∣ (4)

τα(s) = −
∣∣∣ α′′ (s) α′′′ (s) α(iv) (s)

∣∣∣ . (5)

Let f (s), g (s) and h (s) be differentiable functions then we can write

α (s) = f (s)T (s) + g (s)N(s) + h (s)B(s) (6)

and by differentiating equation (6) with respect to s and by using equations (3), we obtain

0 =
{
f ′ (s) − h (s) k2(s) − 1

}
T (s) +

{
f (s) + g′ (s)

}
N(s) +





h′ (s) + g (s)

−h (s) k1(s)




B(s)

Therefore, for α′′ (s) = N(s) and B(s) = α′′′ (s) , we obtain the following theorem.

Theorem 2.1 Let α (s) be a unit speed curve in A3, with equi-affine curvature k(s) and with equi-

affine torsion τα(s), then α (s) has the position vector in (6) according to equi-affine frame for some
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differentiable functions f (s), g (s) and h (s) satisfy the equations






f ′ (s) − h (s) τα(s) = 1,

f (s) + g′ (s) = 0,

h′ (s) + g (s) − h (s) k(s) = 0.

Assume that the position vector of α(s) always lies in the plane sp{N(s), B(s)}. Position vector

of the curve α(s) satisfies the equation

α (s) = g (s)N(s) + h (s)B(s) (7)

for some differentiable functions g (s) and h (s). Differentiating equation (7) with respect to s, we

obtain

0 = {−h (s) τα(s) − 1}T (s) +
{
g′ (s) − h (s) k(s)

}
N +

{
h′ (s) + g (s)

}
B(s)

It follows that 



h (s) τα(s) = −1,

g′ (s) − h (s) k(s) = 0,

h′ (s) + g (s) = 0

(8)

and h (s) = −1
τα(s)

, g′ (s) = −h′′ (s). Therefore, from the second equation we get

h′′ (s) + h (s) k(s) = 0 (9)

and also (
1

τα(s)

)′′
+

k(s)

τα(s)
= 0, (10)

and we find

α (s) =

(
1

τα(s)

)′
N(s) − 1

τα(s)
B(s).

By considering α′′ (s) = N(s) and α′′′ (s) = B(s), we have the following theorem.

Theorem 2.2 Let α (s) be a unit speed curve in A3 , with nonzero equi-affine curvatures satisfying

(
1

τα(s)

)′′
+

k(s)

τα(s)
= 0,

then, α(s) is a curve whose position vector according to equi-affine frame always lies in the sp{N(s), B(s)}
if and only if α(s) is the solution of the differential equation of

1

τα(s)
α′′′ (s) −

(
1

τα(s)

)′
α′′ (s) + α (s) = 0.

In the case of k(s) = 0, from the first and the second equation of (8) g (s) = c0, h (s) = −1
τα(s)

and from the third equation of (8), we get τα(s) = 1
c0s−c1 . Thus, from (7), the position vector of α (s)

satisfies the following differential equation

(c0s− c1)α
′′′(s) − c0α

′′ (s) + α (s) = 0.
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In the case of k(s) nonzero constant, from the second and the third equation of (8)





g (s) = c2

√
k sin(

√
ks) − c1

√
k cos(

√
ks)

h (s) = c1 sin(
√
ks) + c2 cos(

√
ks)

and from the first equation of (8)

τα(s) =
−1

c1 sin(
√
ks) + c2 cos(

√
ks)

.

From (7), the position vector of α (s) satisfies the following differential equation

(
c2
√
k sin(

√
ks) − c1

√
k cos(

√
ks)
)
α′′ (s) +

(
c1 sin(

√
ks) + c2 cos(

√
ks)
)
α′′′(s) = α (s)

It is clear that τα(s) cannot be zero from the first equation of (8).

In the case of τα(s) nonzero constant, from the first and the third equation of (8) g (s) = 0,

h (s) = −1
τα

and from the second equation of (8), we obtain k(s) = 0. From (7), the position vector of

α (s) satisfies the following differential equation

α′′′(s) + ταα (s) = 0

α (s) = c1e
3√−ταbs

2 + c2e
− 3√−ταas

2 + c3e
3√−ταs.

In the case of τα(s) and k(s) nonzero constants, from the first and the third equation of (8)

g (s) = 0, h (s) = −1
τα

and from the second equation of (8), we obtain k(s) = 0. By using (7), the

position vector of α (s) satisfies the following differential equation

α′′′(s) + ταα (s) = 0

α (s) = c1e
3√−ταbs

2 + c2e
− 3√−ταas

2 + c3e
3√−ταs

where a and b are scalars that can be complex in general. Hence, we know the following theorem.

Theorem 2.3 Let α (s) be a unit speed curve in A3 , with the equi-affine curvature k(s) and with the

intrinsic affine torsion τ̃α(s) whose position vector lies in sp{N(s), B(s)} then the followings are true,

(1) If k(s) = 0 and τα(s) = 1
c0s−c1 then position vector of α (s) satisfies the equation

(c0s− c1)α
′′′(s) − c0α

′′ (s) + α (s) = 0;

(2) If k(s) > 0 constant and τα(s) = −1
ω

then position vector of α (s) satisfies the equation

ωα′′′(s) − ω′α′′ (s) − α (s) = 0,

where ω = c1 sin(
√
ks) + c2 cos(

√
ks);

(3) There is no curve whose τα(s) = 0 in A3;

(4) If τα(s) < 0 constant then k(s) = 0 and position vector of α (s) is

α (s) = c1e
ρ1s + c2e

ρ2s + c3e
ρ3s.

where ρ1 =
3√−ταb

2
, ρ2 = − 3√−ταa

2
and ρ3 = 3

√−τα. Here, a and b are scalars that can be complex in

general.
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We assume that the position vector of α(s) always lies in the plane sp{T (s),B(s)}. Position vector

of the curve α(s) satisfies equation

α (s) = f (s)T (s) + h (s)B(s) (11)

for some differentiable functions f (s) and h (s). Differentiating equation (11) with respect to s, we

obtain

0 =
{
f ′ (s)T (s) − h (s) τα(s) − 1

}
T + {f (s) − h (s) k(s)}N + h′ (s)B(s).

It follows that 




f ′ (s) − h (s) τα(s) = 1,

f (s) − h (s) k(s) = 0,

h′ (s) = 0

and it is clear thath (s) = c0 and then,





f ′ (s) − c0τα(s) = 1,

f (s) − c0k(s) = 0,

k′(s) − τα(s) = 1
c0
.

Therefore, we obtained

α (s) = c0k1(s)T (s) + c0B(s).

By considering α′ (s) = T (s) and α′′′ (s) = B(s), we can give the following theorem.

Theorem 2.4 Let α (s) be a unit speed curve in A3 , with nonzero affine curvatures satisfying

k′(s) − τα(s) =
1

c0
,

then, α is a curve whose position vector according to equi-affine frame always lies in the sp{T (s),B(s)}
if and only if α is the solution of the differential equation of

c0k(s)α
′ (s) + c0α

′′′ (s) − α (s) = 0.

In the case of k(s) = 0, from the second and the third equation of (12)

h (s) = c0, f (s) = 0, τ̃α(s) 6= 0

and from the first equation of (12) we get

τα(s) =
−1

c0
.

Thus, from (11), the position vector of α (s) satisfies the following differential equation

c0α
′′′ (s) − α (s) = 0

α (s) = c1e
−as

2(c0)1/3 + c2e
bs

2(c0)1/3 + c3e
s

(c0)1/3 .

In the case of k(s) nonzero constant, from the second and the third equation of (12) h (s) = c0,

f (s) = c0k and from the first equation of (12) τα(s) = −1
c0
. From (11), the position vector of α (s)
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satisfies the following differential equation

c0α
′′′(s) + c0kα

′ (s) − α (s) = 0

α (s) = c1e
{−(c0)1/32−1/3aλ2+k{−2λ(c0)2/3+c0k321/3b}}s

6(c0)2/3λ

+c2e

−{−(c0)1/32−1/3bλ2+k{2λ(c0)2/3+c0k321/3a}}s

6(c0)2/3λ

+c3e
{(c0)1/32−1/3λ2+c0k221/3−(c0)2/3kλ}s

3(c0)2/3λ

where

λ = (−2k3c0 + 3
√

−12c0k3 + 81 + 27)1/3

and a, b are scalars that can be complex in general.

In the case of τα(s) = 0, from the second and the third equation of (12) h (s) = c0, f (s) = c0k(s)

and from the first equation of (12), we obtain

k(s) =
1

c0
s+ c1.

From (11), the position vector of α (s) satisfies the following differential equation

c0α
′′′(s) + c0k(s)α

′ (s) − α (s) = 0.

In the case of τα(s) nonzero constant, from the second and the third equation of (12) h (s) = c0,

f (s) = c0k(s) and from the first equation of (11), we obtain k(s) = 1+c0τα
c0

s + c1. From (12), the

position vector of α (s) satisfies the following differential equation

c0α
′′′(s)c0 + k(s)α′ (s) − α (s) = 0.

In the case of τα(s) and k(s) nonzero constants, from the second and the third equation of (12)

h (s) = c0, f (s) = c0k and from the first equation of (12) we obtain τα = 1
c0
. By using (11), the

position vector of α (s) satisfies the following differential equation

c0α
′′′(s) + c0kα

′ (s) − α (s) = 0.

Hence, we obtain the following theorem.

Theorem 2.5 Let α (s) be a unit speed curve in A3 , with the equi-affine curvature k(s) and with the

intrinsic affine torsion τ̃α(s) whose position vector lies in sp{N(s), B(s)} then, the followings are true.

(1) If k(s) = 0 and τα(s) = −1
c0

then position vector of α (s) satisfies the equation

α (s) = c1e
φ1s + c2e

φ2s + c3e
φ3s

where φ1 = −a
2(c0)1/3 , φ2 = b

2(c0)1/3 and φ3 = 1

(c0)1/3 ;

(2) If τα(s) and k(s) are nonzero constants then position vector of α (s) satisfies the equation

α (s) = c1e
ϕ1s + c2e

ϕ2s + c3e
ϕ3s
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where

ϕ1 =

{
−(c0)

1/32−1/3aλ2 + k
{
−2λ(c0)

2/3 + c0k
321/3b

}}

6(c0)2/3λ

ϕ2 =
−
{
−(c0)

1/32−1/3bλ2 + k
{
2λ(c0)

2/3 + c0k
321/3a

}}

6(c0)2/3λ

ϕ3 =

{
(c0)

1/32−1/3λ2 + c0k
221/3 − (c0)

2/3kλ
}

3(c0)2/3λ
,

λ = (−2k3c0 + 3
√

−12c0k3 + 81 + 27)1/3

and c1, c2, c3 ∈ IR3 such that
∣∣∣ c1 c2 c3

∣∣∣ = 1 and a, b are scalars that can be complex in general;

(3) If τα(s) = 0, and k(s) = 1
c0
s + c1 or τα(s) nonzero constant and k(s) = 1+c0τα

c0
s + c1 then

position vector of α (s) satisfies the equation

c0α
′′′(s)c0 + k(s)α′ (s) − α (s) = 0.

Now, assume that the position vector of α(s) always lies in the plane sp{T (s),N(s)}. Position

vector of the curve α satisfies equation

α (s) = f (s)T (s) + g (s)N(s) (13)

for some differentiable functions f (s) and g (s). Differentiating equation (13) with respect to s, we

obtain

0 =
{
f ′ (s) − 1

}
T (s) +

{
g′ (s) + f (s)

}
N(s) + g (s)B(s).

It follows that 



f ′ (s) = 1,

g′ (s) + f (s) = 0,

g (s) = 0.

(14)

There is no f (s) and g (s) satisfying equations (14). Thus, we get the following theorem.

Theorem 2.6 There is no curve in A3 whose position vector always lies in the sp{T (s),N(s)} according

to equi-affine frame.

§3. Position Vectors of the Curves in Affine 3-Space According to Winternitz Frame

Let α (s) be regular C5−curve with affine arclenght parameter s. A. Winternitz in [5] defined a new

equi-affine frame by taking

T (s) = α′ (s) , N (s) = α′′ (s) , B (s) = α′′′ (s) +
k(s)

4
α′ (s)

which are called tangent, affine normal, binormal vectors and

k1(s) =
−k(s)

4
, k2(s) =

k′(s)

4
− τα(s)
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which are called the first and the secod affine curvatures (also we called them the first and the second

Winternitz affine curvatures). Here, k(s) and τα(s) are called equi-affine curvature and equi-affine

torsion given in (4) and (5). Winternitz frame (also called equi-affine frame for C5−curves) is defined

with the equations 



T ′(s) = N(s)

N ′(s) = k1(s)T (s) +B(s)

B′(s) = k2(s)T (s) + 3k1(s)N(s).

(15)

Let f (s), g (s) and h (s) be differentiable functions, then we can write

α (s) = f (s)T (s) + g (s)N(s) + h (s)B(s). (16)

Differentiating equation (16) with respect to s and by using equations (15), we obtain

0 =





f ′ (s) + g (s) k1(s)

+h (s) k2(s) − 1




 T (s) +





g′ (s) + f (s)

+3h (s) k1(s)




N(s) +
{
h′ (s) + g (s)

}
B(s)

Therefore, for α′′ (s) = N(s) and B(s) = α′′′ (s) + k(s)
4
α′ (s) , we get the following theorem.

Theorem 3.1 Let α (s) be a unit speed curve in A3, with Winternitz curvatures k1(s) and k2(s), then

α (s) has the position vector in (17) according to Winternitz frame for some differentiable functions

f (s), g (s) and h (s) satisfies the equations






f ′ (s) + g (s) k1(s) + h (s) k2(s) = 1

g′ (s) + f (s) + 3h (s) k1(s) = 0

h′ (s) + g (s) = 0.

Assume that the position vector of α(s) always lies in the plane sp{N(s), B(s)}. Position vector

of the curve α(s) satisfies the equation

α (s) = g (s)N(s) + h (s)B(s) (17)

for some differentiable functions g (s) and h (s). Differentiating equation (17) with respect to s, we

obtain

0 = {g (s) k1(s) + h (s) k2(s) − 1}T (s) +
{
g′ (s) + 3h (s) k1(s)

}
N(s) +

{
h′ (s) + g (s)

}
B(s).

Thus, we have the following equations






g (s) k1(s) + h (s) k2(s) = 1

g′ (s) + 3h (s) k1(s) = 0

h′ (s) + g (s) = 0.

(18)

From the first and the third equation of (18)

h′ (s) k1(s) − h (s) k2(s) + 1 = 0
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then solution is

h (s) = ϕ

{
−
∫

ds

ϕk1(s)
+ c0

}
, (19)

where ϕ = e
∫ k2(s)

k1(s)
ds

and from the second equation for g′ (s) = −h′′ (s) we get

h′′ (s) − 3h (s) k1(s) = 0. (20)

Then by using (19), (20) it turns to

ϕ

{∫
ds

ϕk1(s)
− c0

}{
3k1(s) − (k2(s))

2

(k1(s))
2 −

{
k2(s)

k1(s)

}′}
− k2(s)

(k1(s))
2 +

k′1(s)

(k1(s))
2 = 0 (21)

and we find

α (s) =

{
ϕ′
∫

ds

ϕk1(s)
− c0ϕ

′ +
ϕ

ϕk1(s)

}
N(s) − ϕ

{∫
ds

ϕk1(s)
− c0

}
B(s).

By considering α′′ (s) = N(s) and B(s) = α′′′ (s) + k(s)
4
α′ (s) , we get the following theorem.

Theorem 3.2 Let α (s) be a unit speed curve in A3 , with nonzero Winternitz curvatures satisfing

(21), then α(s) is a curve whose position vector according to Winternitz affine frame always lies in

sp{N(s), B(s)} if and only if α(s) is the solution of the differential equation of





ϕ
{∫

ds
ϕk1(s)

− c0
}
α′′′ (s) −

{
ϕ′ ∫ ds

ϕk1(s)
− c0ϕ

′ + ϕ
ϕk1(s)

}
α′′ (s)

−ϕ
{∫

ds
ϕk1(s)

− c0
}
k1(s)α

′ (s) + α (s)




 = 0.

In the case of k1(s) = 0, from (18), we obtain g (s) = c0, h (s) = −c0s+ c1 and k2(s) = 1
−c0s+c1 .

From (17), position vector of α (s) satisfies

(c0s− c1)α
′′′ (s) − c0α

′′ (s) + α (s) = 0.

In the case of k1(s) 6= 0 constant, from the second and the third equation of (18), we get

h′′ (s) − 3k1h (s) = 0

and the solution is

h (s) = c1e
s
√

3k1 + c2e
−s√3k1 .

Also, from the first equation, we get the second curvature is

k2(s) =
1 + c1

√
3k1e

s
√

3k1 − c2
√

3k1e
−s

√
3k1

(
c1es

√
3k1 + c2e−s

√
3k1
)

and so g (s) is

g (s) =
√

3k1

{
c2e

−s√3k1 − c1e
s
√

3k1
}
.

From (17), position vector of α (s) satisfies





(
c1e

s
√

3k1 + c2e
−s

√
3k1
)
α′′′ (s) +

√
3k1

{
c2e

−s
√

3k1 − c1e
s
√

3k1
}
α′′ (s)

−k1

(
c1e

s
√

3k1 + c2e
−s√3k1

)
α′ (s) − α (s)



 = 0.
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In the case of k2(s) = 0, from the first and the third equation of (18), we obtain g (s) = 1
k1(s)

,

h (s) = −
∫

ds
k1(s)

+ c0 and from the second equation of (18), we obtain the relation of the curvatures

k′′1 (s)k1(s) − 3k′1(s) + 3k1(s)
3 = 0.

Thus, from (17), position vector of α (s) satisfies

(
−
∫

ds

k1(s)
+ c0

)
α′′′ (s) +

1

k1(s)
α′′ (s) −

(
−
∫

ds

k1(s)
+ c0

)
k1(s)α

′ (s) − α (s) = 0.

In the case of k2(s) nonzero constant, from the first and the third equation of (18), we obtain

h (s) =

{
1

k2
+ c0e

k2
∫ ds

k1(s)

}
, g (s) = − c0k2

k1(s)
e
k2
∫ ds

k1(s)

and from the second equation of (18), we obtain the relation between the curvatures as follows

{
3k1(s)

3 − (k2)
2

k1(s)2

}
c0e

k2
∫

ds
k1(s) +

3k1(s)

k2
= 0.

From (17), position vector of α (s) satisfies






{
1
k2

+ c0e
k2
∫

ds
k1(s)

}
α′′′ (s) − c0k2

k1(s)
e
k2
∫

ds
k1(s)α′′ (s)

−
{

1
k2

+ c0e
k2
∫ ds

k1(s)

}
k1(s)α

′ (s) − α (s)




 = 0.

In the case of k1(s) and k2(s) nonzero constants, from the first and the third equation of (18), we

get

h (s) =
1

k2
+ c0e

k2
k1
s
, g (s) = −c0 k2

k1
e

k2
k1
s

and also from the second equation of (18), we get the relation between the curvatures as follows

{
3(k1)

2 − (k2)
2} c0k2e

k2
k1
s
+ 3(k1)

3 = 0.

From (17), position vector of α (s) satisfies

(
1

k2
+ c0e

k2
k1
s

)
α′′′ (s) − c0

k2

k1
e

k2
k1
s
α′′ (s) −

(
1

k2
+ c0e

k2
k1
s

)
k1α

′ (s) − α (s) = 0.

Therefore, we get the following theorem.

Theorem 3.3 Let α (s) be a unit speed curve in A3 , with the Winternitz curvatures k1(s) and k2(s),

whose position vector lies in sp{N(s), B(s)} then, the followings are true.

(1) If k1(s) = 0 and k2(s) = 1
−c0s+c1 then position vector of α (s) satisfies the equation

(c0s− c1)α
′′′ (s) − c0α

′′ (s) + α (s) = 0;

(2) If k1(s) > 0 is constant and k2(s) = 1+ϕ̃′

ϕ̃
then position vector of α (s) satisfies the equation

ϕ̃vα′′′ (s) − ϕ̃′α′′ (s) − k1ϕ̃α
′ (s) − α (s) = 0

where ϕ̃ = c1e
s
√

3k1 + c2e
−s√3k1 ;

(3) If k2(s) = 0 and k1(s) satisfy k′′1 (s)k1(s) − 3k′1(s) + 3k1(s)
3 = 0 then position vector of α (s)
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satisfies the equation

ψα′′′ (s) +
1

k1(s)
α′′ (s) − ψk1(s)α

′ (s) − α (s) = 0

where ψ = −
∫

ds
k1(s)

+ c0;

(4) If k2(s) is nonzero constant, k1(s) and k2 satisfy

{
3k1(s)

3 − (k2)
2

k1(s)2

}
c0e

k2
∫ ds

k1(s) +
3k1(s)

k2
= 0

then, the position vector of α (s) satisfies the equation

{
1

k2
+ c0φ

}
α′′′ (s) − c0φk2

k1(s)
α′′ (s) −

{
1

k2
+ c0φ

}
k1(s)α

′ (s) − α (s) = 0

where φ = e
k2
∫

ds
k1(s) ;

(5) If k1(s), k2(s) nonzero constants and satisfy the equation

{
3(k1)

2 − (k2)
2} c0k2e

k2
k1
s
+ 3(k1)

3 = 0

then, the position vector of α (s) satisfies the equation

(
1

k2
+ c0υ

)
α′′′ (s) − c0

k2

k1
υα′′ (s) −

(
1

k2
+ c0υ

)
k1α

′ (s) − α (s) = 0

where υ = e
k2
k1
s
.

We assume that the position vector of α(s) always lies in the plane sp{T (s),B(s)}. Position vector

of the curve α(s) satisfies equation

α (s) = f (s)T (s) + h (s)B(s) (22)

for some differentiable functions f (s) and h (s). Differentiating equation (22) with respect to s, we

obtain

0 =
{
f ′ (s) + h (s) k2(s) − 1

}
T (s) + {f (s) + 3h (s) k1(s)}N(s) + h′ (s)B(s),

it follows that 




f ′ (s) + h (s) k2(s) = 1

f (s) + 3h (s) k1(s) = 0

h′ (s) = 0

(23)

for h (s) = c0. From the first and second equations of (23), we get

k2(s) − 3k′1(s) =
1

c0

and

f (s) = −3c0k1(s).

Therefore, we obtained

α (s) = −3c0k1(s)T (s) + c0B(s).

By considering α′ (s) = T (s) and B(s) = α′′′ (s) + k(s)
4
α′ (s) , we get the following theorem.
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Theorem 3.4 Let α (s) be a unit speed curve in A3 with nonzero Winternitz curvatures satisfing

k2(s) − 3k′1(s) = 1
c0

, then, α (s) is a curve whose position vector according to Winternitz affine frame

always lies in sp{T (s),B(s)} if and only if α (s) is the solution of the differential equation of

c0α
′′′ (s) − 4c0k1(s)α

′ (s) − α (s) = 0

In the case of k1(s) = 0, from (23), we find h (s) = c0, f (s) = 0 and k2(s) 6= 0. From (22), we get

c0α
′′′ (s) − α (s) = 0

and the solution is

α (s) = c1e
−as

2(c0)1/3 + c2e
bs

2(c0)1/3 + c3e
s

(c0)1/3 .

In the case of k1(s) nonzero constant, from the second and the third equation of (23), we obtained

h (s) = c0, f (s) = −3c0k1 and also k2(s) = 1
c0

. From (22), we get α (s) satisfies the equation

c0α
′′′ (s) − 4c0k1α

′ (s) − α (s) = 0.

In the case of k2(s) = 0 constant, from the first and the third equation of (23) f (s) = s + c1,

h (s) = c0 and from the second equation of (23), we obtain k1(s) = s+c1
−3c0

. From (22), we get that α (s)

satisfies the equation

3c0α
′′′ (s) + 4(s+ c1)α

′ (s) − 3α (s) = 0.

In the case of k2(s) nonzero constant, from the first and the third equation of (23) h (s) = c0,

f (s) = (1 − c0k2)s + c1 and from the second equation of (23), we obtain k1(s) = (c0k2−1)s−c1
3c0

. From

(22), we get that α (s) satisfies the equation

3c0α
′′′ (s) + 4 ((1 − c0k2)s+ c1)α

′ (s) − 3α (s) = 0.

In the case of k1(s) and k2(s) nonzero constants, from the first and the third equation of (23)

h (s) = c0, f (s) = −3c0k1 and also from the second equation of (23), we obtain k2 = −1
c0
. From (22),

we get

c0α
′′′ (s) − 4c0k1α

′ (s) − α (s) = 0

and the solution is

α (s) = c1e
{4k1(c0)2/3b121/3−aϕ2}s

12ϕ + c2e
−{4k1(c0)2/3121/3a−ϕ2b}s

12ϕ

+c3e

121/3{4k1(c0)2/3121/3+ϕ2}s

6ϕ(c0)1/3 ,

where ϕ =
{
9 +

√
−768(c0)2(k1)3 + 81

}1/3

. Hence, we can give the following theorem.

Theorem 3.5 Let α (s) be a unit speed curve in A3 with the Winternitz curvatures k1(s) and k2(s),

whose position vector lies in sp{N(s), B(s)}, then, the followings are true.

(1) If k1(s) = 0 then position vector of α (s) is

α (s) = c1e
r1s + c2e

r2s + c3e
r3s

for some k2(s), where r1 = −a
2(c0)1/3 , r2 = −b

2(c0)1/3 and r3 = 1

(c0)1/3 ;
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(2) If k1(s) and k2(s) are nonzero constants then, position vector of α (s) is

α (s) = c1e
ψ1s + c2e

ψ2s + c3e
ψ3s,

where

ψ1 =

{
4k1(c0)

2/3b121/3 − aϕ2
}

12ϕ

ψ2 =
−
{
4k1(c0)

2/3121/3a− ϕ2b
}

12ϕ

ψ3 =
121/3

{
4k1(c0)

2/3121/3 + ϕ2
}

6ϕ(c0)1/3

ϕ =
{

9 +
√

−768(c0)2(k1)3 + 81
}1/3

and a, b are scalars that can be complex in general;

(3) If k2(s) = 0 and k1(s) = s+c1
−3c0

then, position vector of α (s) satisfies the equation

3c0α
′′′ (s) + 4(s+ c1)α

′ (s) − 3α (s) = 0;

(4) If k2(s) is nonzero constant and k1(s) = (c0k2−1)s−c1
3c0

then, position vector of α (s) satisfies

the equation

3c0α
′′′ (s) + 4 ((1 − c0k2)s+ c1)α

′ (s) − 3α (s) = 0.

Now, assume that the position vector of α(s) always lies in the plane sp{T (s),N(s)}. Position

vector of the curve α(s) satisfies equations

α (s) = f (s)T (s) + g (s)N(s) (24)

and

0 =
{
f ′ (s) + g (s) k1(s) − 1

}
T (s) +

{
g′ (s) + f (s)

}
N(s) + g (s)B(s)

for some differentiable functions f (s) and g (s). Differentiating equation (24) with respect to s, we

obtain 




f ′ (s) + g (s) k1(s) = 1

g′ (s) + f (s) = 0

g (s) = 0.

(25)

There is no f (s) and g (s) satisfying equations (25). Thus, we get the following theorem.

Theorem 3.6 There is no curve in A3 whose position vector always lies in sp{T (s),N(s)} according

to Winternitz affine frame.

§4. Position Vectors of the Curves in Affine 3-Space According to Intrinsic

Equi-Affine Frame

In [2], D. Davis obtained a new affine frame by taking T (s) := α′(s), N(s) := α′′(s), B(s) := k(s)α′(s)+

α′′′(s) (which is called intrinsic affine binormal) and τ̃α(s) := k(s) − τ ′α(s) (which is called intrinsic
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affine torsion) with the equations






T ′(s) = N(s)

N ′(s) = −k(s)T (s) +B(s)

B′(s) = −τ̃α(s)T (s).

(26)

We called {T (s),N(s), B(s)} is intrinsic affine frame. Here, k(s) and τα(s) are called equi-affine cur-

vature and equi-affine torsion given in (4) and (5).

Let f (s), g (s) and h (s) be differentiable functions then, we can write

α (s) = f (s)T (s) + g (s)N(s) + h (s)B(s). (27)

Differentiating equation (27) with respect to s and by using equations (26), we obtain

0 =
{
f ′ (s) − h (s) τ̃α(s) − 1

}
T (s) +

{
f (s) + g′ (s)

}
N(s) +





h′ (s) + g (s)

−h (s) k(s)




B(s).

For α′′ (s) = N(s) and B(s) = k(s)α′(s) + α′′′(s), we can give the following theorem.

Theorem 4.1 Let α (s) be a unit speed curve in A3 with equi-affine curvature k(s) and with intrinsic

torsion τ̃α(s), then, α (s) has the position vector in (27) according to intrinsic equi-affine frame for

some differentiable functions f (s), g (s) and h (s) satisfy the equations






f ′ (s) − h (s) τ̃α(s) = 1,

f (s) + g′ (s) = 0,

h′ (s) + g (s) − h (s) k(s) = 0.

Assume that the position vector of α (s) always lies in the plane sp{N(s), B(s)} then, position

vector of the curve α (s) satisfies the equation

α (s) = g (s)N(s) + h (s)B(s) (28)

for some differentiable functions g (s) and h (s). Differentiating equation (28) with respect to s, we

obtain

0 = {−h (s) τ̃α(s) − g (s) k(s) − 1} T (s) + g′ (s)N(s) +
{
h′ (s) + g (s)

}
B(s).

It follows that 



h (s) τ̃α(s) + g (s) k(s) = −1,

g′ (s) = 0,

h′ (s) + g (s) = 0.

(29)

and we get g (s) = c0 and h (s) = −c0s+ c1. From the second, the third and the first equation of (29),

we obtain

(−c0s+ c1) τ̃α(s) + c0k(s) = −1.

In this case, we can write

α (s) = c0N(s) + (−c0s+ c1)B(s).

By considering α′′ (s) = N(s) and B(s) = k(s)α′(s) + α′′′(s) we can give the following theorem.
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Theorem 4.2 Let α (s) be a unit speed curve in A3 with nonzero equi-affine curvature k(s) and with

intrinsic torsion τ̃α(s) satisfying

(c0s− c1) τ̃α(s) − c0k(s) = 1,

then, α (s) is a curve whose position vector according to intrinsic equi-affine frame always lies in

sp{N(s), B(s)} if and only if α (s) is the solution of the equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) k(s)α
′(s) − α (s) = 0.

In the case of k(s) = 0, from the first and the second equation of (29), we obtained g (s) = c0,

h (s) = −1
τ̃α(s)

and τ̃α(s) 6= 0. From the third equation of (29), we get τ̃α(s) = 1
c0s−c1 . Thus, from (28),

the position vector of α (s) satisfies the following differential equation

α′′′(s) − c0τ̃α(s)α′′ (s) + τ̃α(s)α (s) = 0.

In the case of k(s) nonzero constant, from the second and the third equation of (29), we obtained

g (s) = c0, h (s) = −c0s + c1. From the first equation of (29), we get τ̃α(s) = 1+c0k
c0s−c1 . From (28), the

position vector of α (s) satisfies the following differential equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) kα
′(s) − α (s) = 0.

In the case of τ̃α(s) = 0, from the second and the third equation of (29), we obtained g (s) = c0,

h (s) = −c0s + c1. From the first equation of (29), we obtained k(s) = −1
c0
. From (28), the position

vector of α (s) satisfies the following differential equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) k(s)α
′(s) − α (s) = 0.

In the case of τ̃α(s) nonzero constant, from the second and the third equation of (29) g (s) = c0,

h (s) = −c0s + c1 and from the first equation of (29), we obtain k(s) = (c0s−c1)τ̃α−1
c0

. From (28), the

position vector of α (s) satisfies the following differential equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) k(s)α
′(s) − α (s) = 0.

In the case of τ̃α(s) and k(s) nonzero constants, from the second and the third equation of (29),

we obtained g (s) = c0, h (s) = −c0s+ c1 and from the first equation of (29), we obtained τ̃α = 1+c0k
c0s−c1 .

By using (28), the position vector of α (s) satisfies the following differential equation,

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) kα
′(s) − α (s) = 0.

Hence, we get the following theorem.

Theorem 4.3 Let α (s) be a unit speed curve in A3 with the equi-affine curvature k(s) and with the

intrinsic affine torsion τ̃α(s) whose position vector lies in sp{N(s), B(s)} then, the followings are true.

(1) If k(s) = 0 then position vector of α (s) satisfies the equation

α′′′(s) − c0τ̃α(s)α′′ (s) + τ̃α(s)α (s) = 0
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for some τ̃α(s);

(2) If τ̃α(s) = 0 and k(s) = −1
c0

or τ̃α(s) is nonzero constant and

k(s) =
(c0s− c1)τ̃α − 1

c0

then, position vector of α (s) satisfies the equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) k(s)α
′(s) − α (s) = 0;

(3) If k(s) is nonzero constant and τ̃α(s) = 1+c0k
c0s−c1 or τ̃α(s) and k(s) are nonzero constants then,

position vector of α (s) satisfies the equation

(−c0s+ c1)α
′′′(s) + c0α

′′ (s) + (−c0s+ c1) kα
′(s) − α (s) = 0.

We assume that the position vector of α always lies in the plane sp{T (s),B(s)}. Position vector

of the curve α satisfies equation

α (s) = f (s)T (s) + h (s)B(s) (30)

for some differentiable functions f (s) and h (s). Differentiating equation (30), with respect to s, we

obtain

0 =
{
f ′ (s) − h (s) τα(s) − 1

}
T (s) + f (s)N(s) + h′ (s)B(s).

It follows that 



f ′ (s) − h (s) τα(s) = 1,

f (s) = 0,

h′ (s) = 0

(31)

and we get h (s) = c0 and τα(s) = −1
c0

. Thus, we can write

α (s) = c0B(s).

If τα(s) = 0 then, there is no function f (s) that satisfies the first and the second equation of (31).

By considering α′ (s) = T (s) and B(s) = k(s)α′ + α′′′, we can give the following theorem.

Theorem 4.4 Let α (s) be a unit speed curve in A3 with nonzero intrinsic affine torsion, then, α (s)

is a curve whose position vector according to intrinsic equi-affine frame always lies in sp{T (s),B(s)}
if and only if α (s) is the solution of the equation

c0α
′′′ (s) + c0k(s)α

′ (s) − α (s) = 0

for some k(s).

Now, assume that the position vector of α (s) always lies in the plane sp{T (s),N(s)}. The position

vector of the curve α (s) satisfies equation

α (s) = f (s)T (s) + g (s)N(s) (32)

for some differentiable functions f (s) and g (s). Differentiating equation (32) with respect to s, we
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obtain

0 =
{
f ′ (s)T (s) − g (s)κα(s) − 1

}
T (s) +

{
g′ (s) + f (s)

}
N(s) + g (s)B(s).

It follows that 



f ′ (s)T (s) − g (s)κα(s) = 1,

g′ (s) + f (s) = 0,

g (s) = 0.

(33)

There is no f (s) and g (s) satisfying equations (33). Thus, we get the following theorem.

Theorem 4.5 There is no curve in A3 whose position vector always lies in the sp{T (s),N(s)} according

to intrinsic equi-affine frame.
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§1. Introduction

A function f : I ⊆ R → R is said to be convex if the inequality

f (tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y)

is valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then the function f is said to be concave

on interval I 6= ∅.
This definition is well known in the literature. It is well known that theory of convex sets and

convex functions play an important role in mathematics and the other pure and applied sciences. In

recent years, the concept of convexity has been extended and generalized in various directions using

novel and innovative techniques.

Theorem 1.1 Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and

a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤ 1

b− a

b∫

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for

convex functions.

The classical Hermite-Hadamard integral inequality provides estimates of the mean value of a

continuous convex or concave function. See [2-4, 7, 9], for the results of the generalization, improvement

and extension of the famous integral inequality (1.1).

1Received January 15, 2019, Accepted May 27, 2019.
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The following inequality is well known in the literature as Simpson’s inequality:

Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b) and
∥∥∥f (4)

∥∥∥
∞

=

sup
x∈(a,b)

∣∣∣f (4)(x)
∣∣∣ <∞. Then the following inequality holds:

∣∣∣∣∣∣
1

3

[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ 1

2880

∥∥∥f (4)
∥∥∥
∞

(b− a)2 .

In recent years many researchers have studied error estimations for Simpson’s inequality; for

refinements, counterparts, generalizations and new Simpson’s type inequalities, see [1,10-12].

In this paper, in order to provide a unified approach to midpoint inequality, trapezoid inequality

and Simpson’s inequality for functions whose derivatives in absolute value at certain power are multi-

plicatively P -functions, we derive a general integral identity for differentiable functions. Finally some

applications for special means of real numbers are provided.

Definition 1.2 Let I 6= ∅ be an interval in R. The function f : I → [0,∞) is said to be multiplicatively

P -function (or log-P -function), if the inequality

f (tx+ (1 − t)y) ≤ f(x)f(y)

holds for all x, y ∈ I and t ∈ [0, 1] .

In [8], some inequalities of Hermite-Hadamard type for differentiable multiplicatively P -functions

were presented as follows.

Theorem 1.3 Let the function f : I → [1,∞),be a multiplicatively P -function and a, b ∈ I with a < b.

If f ∈ L [a, b], then the following inequalities hold:

(i) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)f (a+ b− x) dx ≤ [f(a)f(b)]2;

(ii) f

(
a+ b

2

)
≤ f(a)f(b)

1

b− a

∫ b

a

f(x)dx ≤ [f(a)f(b)]2.

In [5], İşcan obtained inequalities for differentiable convex functions using following lemma.

Lemma 1.4 Let f : I ⊂ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I

with a < b and α, λ ∈ [0, 1]. Then the following equality holds:

λ (αf(a) + (1 − α) f(b)) + (1 − λ) f(αa + (1 − α) b) − 1

b− a

b∫

a

f(x)dx (1.2)

= (b− a)




1−α∫

0

(t− αλ) f ′ (tb+ (1 − t)a) dt+

1∫

1−α

(t− 1 + λ (1 − α)) f ′ (tb+ (1 − t)a) dt


 .

§2. Main Results

In this section, in order to prove our main theorems, we shall use the identity (1.4).
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Theorem 2.1 Let f : I ⊂ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where

a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is multiplicatively P -function on [a, b], q ≥ 1, then the

following inequality holds:

∣∣∣∣∣∣
λ (αf(a) + (1 − α) f(b)) + (1 − λ) f(αa + (1 − α) b) − 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
(2.1)

≤





(b− a) |f ′(a)| |f ′(b)| [γ2 + υ2] , αλ ≤ 1 − α ≤ 1 − λ (1 − α)

(b− a) |f ′(a)| |f ′(b)| [γ2 + υ1] αλ ≤ 1 − λ (1 − α) ≤ 1 − α

(b− a) |f ′(a)| |f ′(b)| [γ1 + υ2] 1 − α ≤ αλ ≤ 1 − λ (1 − α)

where

γ1 = (1 − α)

[
αλ − (1 − α)

2

]
, γ2 = (αλ)2 − γ1 , (2.2)

υ1 =
1 − (1 − α)2

2
− α [1 − λ (1 − α)] , (2.3)

υ2 =
1 + (1 − α)2

2
− (λ+ 1) (1 − α) [1 − λ (1 − α)] ,

Proof Suppose that q ≥ 1. From Lemma 1.4, the well known power mean inequality and property

of multiplicatively P -function of |f ′|q on [a, b], that is

∣∣f ′ (tb+ (1 − t)a)
∣∣q ≤

∣∣f ′(b)
∣∣q ∣∣f ′(a)

∣∣q , t ∈ [0, 1] ,

we have

∣∣∣∣∣∣
λ (αf(a) + (1 − α) f(b)) + (1 − λ) f(αa + (1 − α) b) − 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣

≤ (b− a)




1−α∫

0

|t− αλ|
∣∣f ′ (tb+ (1 − t)a)

∣∣ dt+
1∫

1−α

|t− 1 + λ (1 − α)|
∣∣f ′ (tb+ (1 − t)a)

∣∣ dt




≤ (b− a)








1−α∫

0

|t− αλ| dt




1− 1
q



1−α∫

0

|t− αλ|
∣∣f ′ (tb+ (1 − t)a)

∣∣q dt




1
q

+




1∫

1−α

|t− 1 + λ (1 − α)| dt




1− 1
q



1∫

1−α

|t− 1 + λ (1 − α)|
∣∣f ′ (tb+ (1 − t)a)

∣∣q dt




1
q





≤ (b− a)
∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣




1−α∫

0

|t− αλ| dt+

1∫

1−α

|t− 1 + λ (1 − α)| dt



 . (2.4)

Hence, by simple computation

1−α∫

0

|t− αλ| dt =





γ2, αλ ≤ 1 − α

γ1, αλ ≥ 1 − α
, (2.5)

γ1 = (1 − α)

[
αλ− (1 − α)

2

]
, γ2 = (αλ)2 − γ1 ,
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1∫

1−α

|t− 1 + λ (1 − α)| dt =





υ1, 1 − λ (1 − α) ≤ 1 − α

υ2, 1 − λ (1 − α) ≥ 1 − α
, (2.6)

υ1 =
1 − (1 − α)2

2
− α [1 − λ (1 − α)] ,

υ2 =
1 + (1 − α)2

2
− (λ+ 1) (1 − α) [1 − λ (1 − α)] ,

1−α∫

0

|t− αλ|
∣∣f ′ (tb+ (1 − t)a)

∣∣q dt ≤
1−α∫

0

|t− αλ|
∣∣f ′(b)

∣∣q ∣∣f ′(a)
∣∣q dt

=
∣∣f ′(b)

∣∣q ∣∣f ′(a)
∣∣q

1−α∫

0

|t− αλ| dt

=





γ2 |f ′(a)|q |f ′(b)|q , αλ ≤ 1 − α

γ1 |f ′(a)|q |f ′(b)|q , αλ ≥ 1 − α
, (2.7)

1∫

1−α

|t− 1 + λ (1 − α)|
∣∣f ′ (tb+ (1 − t)a)

∣∣q dt

≤
1∫

1−α

|t− 1 + λ (1 − α)|
∣∣f ′(b)

∣∣q ∣∣f ′(a)
∣∣q dt

=
∣∣f ′(b)

∣∣q ∣∣f ′(a)
∣∣q

1∫

1−α

|t− 1 + λ (1 − α)| dt

=





υ1 |f ′(b)|q |f ′(a)|q , 1 − λ (1 − α) ≤ 1 − α

υ2 |f ′(b)|q |f ′(a)|q , 1 − λ (1 − α) ≥ 1 − α
(2.8)

Thus, using (2.5)-(2.8) in (2.4), we obtain the inequality (2.1). This completes the proof. 2
Corollary 2.2 Let the assumptions of Theorem 2.1 hold. Then for α = 1

2
and λ = 1

3
, from the

inequality (2.1) we get the following Simpson type inequality

∣∣∣∣∣∣
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ 5

36
(b− a)

∣∣f ′(a)
∣∣ ∣∣f ′(b)

∣∣ . (2.9)

Corollary 2.3 Let the assumptions of Theorem 2.1 hold. Then for α = 1
2

and λ = 0, from the

inequality (2.1) we get the following midpoint inequality

∣∣∣∣∣∣
f

(
a+ b

2

)
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

4

∣∣f ′(a)
∣∣ ∣∣f ′(b)

∣∣ (2.10)

Remark 2.4 We note that the result obtained in Corollary 2.3 coincides with the result in [8].
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Corollary 2.5 Let the assumptions of Theorem 2.1 hold. Then for α = 1
2

and λ = 1, from the

inequality (2.1) we get the following trapezoid inequality

∣∣∣∣∣∣
f (a) + f (b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

4

∣∣f ′(a)
∣∣ ∣∣f ′(b)

∣∣

Remark 2.6 We note that the result obtained in Corollary 2.5 coincides with the result in [8].

Using Lemma 1.4 we shall give another result for multiplicatively P -functions as follows.

Theorem 2.7 Let f : I ⊂ R → R be a differentiable mapping on I◦ such that f ′ ∈ L[a, b], where

a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is multiplicatively P -function on [a, b], q > 1, then the

following inequality holds:

∣∣∣∣∣∣
λ (αf(a) + (1 − α) f(b)) + (1 − λ) f(αa + (1 − α) b) − 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
(2.11)

≤ (b− a)
∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣
(

1

p+ 1

) 1
p






(1 − α)
1
q θ

1
p

1 + α
1
q θ

1
p

2 , αλ ≤ 1 − α ≤ 1 − λ (1 − α)

(1 − α)
1
q θ

1
p

1 + α
1
q θ

1
p

4 , αλ ≤ 1 − λ (1 − α) ≤ 1 − α

(1 − α)
1
q θ

1
p

3 + α
1
q θ

1
p

2 , 1 − α ≤ αλ ≤ 1 − λ (1 − α)

where

θ1 = (αλ)p+1 + (1 − α− αλ)p+1 , θ2 = [λ (1 − α)]p+1 + [α− λ (1 − α)]p+1

θ3 = (αλ)p+1 − (1 − α− αλ)p+1 , θ4 = [λ (1 − α)]p+1 − [α− λ (1 − α)]p+1
(2.12)

and 1
p

+ 1
q

= 1.

Proof From Lemma 1.4 and by Hölder’s integral inequality, we have

∣∣∣∣∣∣
λ (αf(a) + (1 − α) f(b)) + (1 − λ) f(αa+ (1 − α) b) − 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣

≤ (b− a)




1−α∫

0

|t− αλ|
∣∣f ′ (tb+ (1 − t)a)

∣∣ dt+

1∫

1−α

|t− 1 + λ (1 − α)|
∣∣f ′ (tb+ (1 − t)a)

∣∣ dt





≤ (b− a)








1−α∫

0

|t− αλ|p dt




1
p



1−α∫

0

∣∣f ′ (tb+ (1 − t)a)
∣∣q dt




1
q

+




1∫

1−α

|t− 1 + λ (1 − α)|p dt




1
p



1∫

1−α

∣∣f ′ (tb+ (1 − t)a)
∣∣q dt




1
q





≤ (b− a)
∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣


(1 − α)

1
q




1−α∫

0

|t− αλ|p dt





1
p
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+α
1
q




1∫

1−α

|t− 1 + λ (1 − α)|p dt





1
p


 . (2.13)

By simple computation

1−α∫

0

|t− αλ|p dt =






(αλ)p+1+(1−α−αλ)p+1

p+1
, αλ ≤ 1 − α

(αλ)p+1−(αλ−1+α)p+1

p+1
, αλ ≥ 1 − α

, (2.14)

and

1∫

1−α

|t− 1 + λ (1 − α)|p dt =





[λ(1−α)]p+1+[α−λ(1−α)]p+1

p+1
, 1 − α ≤ 1 − λ (1 − α)

[λ(1−α)]p+1−[λ(1−α)−α]p+1

p+1
, 1 − α ≥ 1 − λ (1 − α)

. (2.15)

Thus, using (2.15) in (2.13), we obtain the inequality (2.11). This completes the proof. 2
Corollary 2.8 Let the assumptions of Theorem 2.7 hold. Then for α = 1

2
and λ = 1

3
, from the

inequality (2.11) we get the following Simpson type inequality

∣∣∣∣∣∣
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

6

(
1 + 2p+1

3 (p+ 1)

) 1
p ∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣ . (2.16)

Corollary 2.9 Let the assumptions of Theorem 2.7 hold. Then for α = 1
2

and λ = 0, from the

inequality (2.11) we get the following midpoint inequality

∣∣∣∣∣∣
f

(
a+ b

2

)
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

2

(
1

p+ 1

) 1
p ∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣

Remark 2.10 Notice that the result obtained in Corollary 2.9 coincides with the result in [8].

Corollary 2.11 Let the assumptions of Theorem 2.7 hold. Then for α = 1
2

and λ = 1, from the

inequality (2.11) we get the following trapezoid inequality

∣∣∣∣∣∣
f (a) + f (b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

2

(
1

p+ 1

) 1
p ∣∣f ′(a)

∣∣ ∣∣f ′(b)
∣∣ .

Remark 2.12 Notice that the result obtained in Corollary 2.11 coincides with the result in [8].

§3. Some Applications for Special Means

Let us recall the following special means of the two nonnegative numbers a and b with α ∈ [0, 1] :

(1) The weighted arithmetic mean

Aα = Aα (a, b) := αa+ (1 − α)b, a, b ≥ 0.
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(2) The unweighted arithmetic mean

A = A (a, b) :=
a+ b

2
, a, b ≥ 0.

(3) The weighted geometric mean

Gα = Gα(a, b) := aαb1−α, a, b > 0.

(4) The unweighted geometric mean

G = G(a, b) :=
√
ab, a, b > 0.

(5) The Logarithmic mean

L = L (a, b) :=
b− a

ln b− ln a
, a 6= b, a, b > 0.

(6) Then n-Logarithmic mean

Ln = Ln (a, b) :=

(
bn+1 − an+1

(n+ 1)(b− a)

) 1
n

, n ∈ Z\ {−1, 0} , a, b > 0, a 6= b.

Proposition 3.1 Let a, b ∈ R with 0 < a < b and n ∈ Z
+ ∪ {0} . Then, for α, λ ∈ [0, 1] and q ≥ 1, we

have the following inequality:

|λAα (an, bn) + (1 − λ)Anα − Lnn|

≤






(b− a)n2 (ab)n−1 [γ2 + υ2] αλ ≤ 1 − α ≤ 1 − λ (1 − α)

(b− a)n2 (ab)n−1 [γ2 + υ1] αλ ≤ 1 − λ (1 − α) ≤ 1 − α

(b− a)n2 (ab)n−1 [γ1 + υ2] 1 − α ≤ αλ ≤ 1 − λ (1 − α)

,

where γ1, γ2, υ1, υ2, numbers are defined as in (2.2) − (2.3).

Proof This assertion immediately follows from Theorem 2.1 in the case of f(x) = xn, x ∈
[1,∞) , n ∈ Z

+ ∪ {0} . 2
Proposition 3.2 Let a, b ∈ R with 0 < a < b and n ∈ Z

+ ∪ {0} . Then, for α, λ ∈ [0, 1] and q > 1, we

have the following inequality:

|λAα (an, bn) + (1 − λ)Anα − Lnn| ≤ (b− a)n2G2n−2

(
1

p+ 1

) 1
p

×





[
(1 − α)

1
q θ

1
p

1 + α
1
q θ

1
p

2

]
, αλ ≤ 1 − α ≤ 1 − λ (1 − α)

[
(1 − α)

1
q θ

1
p

1 + α
1
q θ

1
p

4

]
, αλ ≤ 1 − λ (1 − α) ≤ 1 − α

[
(1 − α)

1
q θ

1
p

3 + α
1
q θ

1
p

2

]
, 1 − α ≤ αλ ≤ 1 − λ (1 − α)

,

where θ1, θ2, θ3, θ4 numbers are defined as in (2.12).

Proof This assertion immediately follows from Theorem 2.7 in the case of f(x) = xn, x ∈
[1,∞) , n ∈ Z

+ ∪ {0} . 2
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Proposition 3.3 Let a, b ∈ R with 0 < a < b. Then, for α, λ ∈ [0, 1] and q ≥ 1, we have the following

inequality:

∣∣∣Aλ
(
Aα
(
ea, eb

)
, Gα

(
ea, eb

))
− L

(
ea, eb

)∣∣∣

≤





(b− a) e2A [γ2 + υ2] αλ ≤ 1 − α ≤ 1 − λ (1 − α)

(b− a) e2A [γ2 + υ1] αλ ≤ 1 − λ (1 − α) ≤ 1 − α

(b− a) e2A [γ1 + υ2] 1 − α ≤ αλ ≤ 1 − λ (1 − α)

,

where γ1, γ2, υ1, υ2, numbers are defined as in (2.2) − (2.3).

Proof The assertion follows from Theorem 2.1 in the case of f(x) = ex, x ∈ [0,∞) . 2
Proposition 3.4 Let a, b ∈ R with 0 < a < b. Then, for α, λ ∈ [0, 1] and q > 1, we have the following

inequality:
∣∣∣Aλ

(
Aα
(
ea, eb

)
, Gα

(
ea, eb

))
− L

(
ea, eb

)∣∣∣ ≤ (b− a) e2A
(

1

p+ 1

) 1
p

×





[
(1 − α)

1
q θ

1
p

1 + α
1
q θ

1
p

2

]
, αλ ≤ 1 − α ≤ 1 − λ (1 − α)

[
(1 − α)

1
q θ

1
p

1 + α
1
q θ

1
p

4

]
, αλ ≤ 1 − λ (1 − α) ≤ 1 − α

[
(1 − α)

1
q θ

1
p

3 + α
1
q θ

1
p

2

]
, 1 − α ≤ αλ ≤ 1 − λ (1 − α)

,

where θ1, θ2, θ3, θ4 numbers are defined as in (2.12).

Proof The assertion follows from Theorem 2.7 in the case of f(x) = ex, x ∈ [0,∞) . 2
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Abstract: In a study of traffic, the labeling problems in graph theory can be used by

considering the crowd at every junction as the weights of a vertex and expected average

traffic in each street as the weight of the corresponding edge. If we assume the expected

traffic at each street as the arithmetic mean of the weight of the end vertices, that causes

mean labeling of the graph. When we consider a geometric mean instead of arithmetic mean

in a large population of a city, the rate of growth of traffic in each street will be more

accurate. The geometric mean labeling of graphs have been defined in which the edge labels

may be assigned by either flooring function or ceiling function. In this, the readers will

get some confusion in finding the edge labels which edge is assigned by flooring function

and which edge is assigned by ceiling function. To avoid this confusion, we establish the

C-Geometric mean labeling on graphs by considering the edge labels obtained only from the

ceiling function. A C-Geometric mean labeling of a graph G with q edges, is an injective

function from the vertex set of G to {1, 2, 3, · · · , q + 1} such that the edge labels obtained

from the ceiling function of geometric mean of the vertex labels of the end vertices of each

edge, are all distinct and the set of edge labels is {2, 3, 4, · · · , q+ 1}. A graph is said to be a

C-Geometric mean graph if it admits a C-Geometric mean labeling. In this paper, we study

the C-geometric meanness of some cycle related graphs such as cycle, union of a path and a

cycle, union of two cycles, the graph C3 ×Pn, corona of cycle, the graphs Pa,b, P
b
a and some

chain graphs.

Key Words: Labeling, C-Geometric mean labeling, Smarandache 2k-Geometric mean la-

beling, C-Geometric mean graph.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V,E) be a

graph with p vertices and q edges. For notations and terminology, we follow [4]. For a detailed survey

on graph labeling we refer to [3].

Path on n vertices is denoted by Pn. G⊙Sm is the graph obtained from G by attaching m pendant

vertices at each vertex of G. Let G1 and G2 be any two graphs with p1 and p2 vertices respectively.

Then the cartesian product G1 ×G2 has p1p2 vertices which are {(u, v) : u ∈ G1, v ∈ G2} and any two

1Received November 1, 2018, Accepted May 30, 2019.
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vertices (u1, v1) and (u2, v2) are adjacent in G1 × G2 if either u1 = u2 and v1 and v2 are adjacent in

G2 or u1 and u2 are adjacent in G1 and v1 = v2.

Let u and v be two fixed vertices. We connect u and v by means of b ≥ 2 internally disjoint paths

of length a ≥ 2 each. The resulting graph embedded in the plane is denoted by Pa,b. Let a and b be

integers such that a ≥ 2 and b ≥ 2. Let y1, y2, · · · , ya be the ‘a’ fixed vertices. We connect yi and yi+1

by means of b internally disjoint paths of length (i+ 1) for each i, 1 ≤ i ≤ a− 1. The resulting graph

embedded in the plane is denoted by P ba .

Barrientos [1] defines a chain graph as one with blocks B1, B2, B3, · · · , Bm such that for every

i, Bi and Bi+1 have a common vertex in such a way that the block cut point graph is a path. The

chain graph Ĝ(p1, k1, p2, k2, · · · , kn−1, pn) is obtained from n cycles of length p1, p2, p3, · · · , pn and

(n− 1) paths on k1, k2, k3, · · · , kn−1 vertices respectively by identifying a cycle and a path at a vertex

alternatively as follows. If the ith cycle is of odd length, then its
(
pi+3

2

)th
vertex is identified with a

pendant vertex of the ith path and if the ith cycle is of even length, then its
(
pi+2

2

)th
vertex is identified

with a pendant vertex of the ith path while the other pendant vertex of the ith path is identified with

the first vertex of the (i+ 1)th cycle. The chain graph G∗(p1, p2, · · · , pn) is obtained from n cycles of

length p1, p2, · · · , pn by identifying consecutive cycles at a vertex as follows. If the ith cycle is of odd

length, then its
(
pi+3

2

)th
vertex is identified with the first vertex of (i+1)th cycle and if the ith cycle is

of even length, then its
(
pi+2

2

)th
vertex is identified with the first vertex of (i+ 1)th cycle. The graph

G′(p1, p2, · · · , pn) is obtained from n cycles of length p1, p2, · · · , pn by identifying consecutive cycles at

an edge as follows:

The
(
pj+3

2

)th
edge of jth cycle is identified with the first edge of (j+1)th cycle when j is odd and

the
(
pj+1

2

)th
edge of jth cycle is identified with the first edge of (j + 1)th cycle when j is even.

The study of graceful graphs and graceful labeling methods was first introduced by Rosa [5] and

many authors are working in graph labeling [2,3]. Motivated by their methods, we introduce a new

type of labeling called C-Geometric mean labeling. A function f is called a C-Geometric mean labeling

of a graph G if f : V (G) → {1, 2, 3, · · · , q + 1} is injective and the induced function f∗ : E(G) →
{2, 3, 4, · · · , q + 1} defined as

f∗(uv) =
⌈√

f(u)f(v)
⌉
, for all uv ∈ E(G)

is bijective. Furthermore, if

f∗(uv) =
⌈

2k
√
f(u)kf(v)k

⌉
, for all uv ∈ E(G)

is bijective, where k ≥ 1 is an integer, such a function f is called a Smarandache 2k-Geometric mean

labeling, and C-Geometric mean labeling of a graph G if k = 1. A graph that admits a C-Geometric

mean labeling is called a C-Geometric mean graph.

In [6], S.Somasundaram et al. defined the geometric mean labeling as follows:

A graph G = (V,E) with p vertices and q edges is said to be a geometric mean graph if it is possible

to label the vertices x ∈ V with distinct labels f(x) from 1, 2, · · · , q+1 in such way that when each edge

e = uv is labeled with f(uv) =
⌊√

f(u)f(v)
⌋

or
⌈√

f(u)f(v)
⌋

then the edge labels are distinct.

In the above definition, the readers will get some confusion in finding the edge labels which edge

is assigned by flooring function and which edge is assigned by ceiling function.

In [6], the authors have given a geometric mean labeling of the graph C5 ∪ C7 as in the Figure 1.
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Figure 1 A geometric mean labeling of C5 ∪ C7.

From the above figure, for the edge uv, they have used flooring function
⌊√

f(u)f(v)
⌋

and for

the edge vw, they have used ceiling function
⌈√

f(u)f(v)
⌉

for fulfilling their requirement. To avoid

the confusion of assigning the edge labels in their definition, we just consider the ceiling function⌈√
f(u)f(v)

⌉
for our discussion. Based on our definition, the C-Geometric mean labeling of the same

graph C5 ∪ C7 is given in Figure 2.rr rr r
rr rr rr r
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4
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Figure 2 A C-Geometric mean labeling of C5 ∪ C7

In this paper, we have discussed the C-Geometric mean labeling of the cycle for n ≥ 4, union of

any two cycles Cm and Cn, union of the cycle Cm and a path Pn, the graph C3 × Pn, corona of cycle,

the graphs Pa,b, P
b
a and some chain graphs.

§2. Main Results

Theorem 2.1 A graph Cn is a C-Geometric mean graph only if n ≥ 4.

Proof The proof is divided into 2 cases following.

Case 1. n ≥ 4.

Let v1, v2, · · · , vn be the vertices of Cn. Define f : V (Cn) → {1, 2, 3, · · · , n+ 1} as follows:

f(vi) =





2i− 1, 1 ≤ i ≤ 2,

2i− 2, 3 ≤ i ≤
⌊
n
2

⌋
+ 1,

n+ 1, i =
⌊
n
2

⌋
+ 2,

2n+ 5 − 2i,
⌊
n
2

⌋
+ 3 ≤ i ≤ n.



72 A.Durai Baskar and S.Arockiaraj

Then, the induced edge labeling is obtained as follows:

f∗(vivi+1) =






2i, 1 ≤ i ≤ 2,

2i− 1, 3 ≤ i ≤
⌊
n
2

⌋
+ 1,

n+ 1, i =
⌊
n
2

⌋
+ 2 and n is odd,

n, i =
⌊
n
2

⌋
+ 2 and n is even,

2n+ 4 − 2i, 3 ≤ i ≤
⌊
n
2

⌋
+ 3 ≤ i ≤ n− 1

and f∗(vnv1) = 3.

Hence, f is a C-Geometric mean labeling of the cycle Cn. Thus the cycle Cn is a C-Geometric

mean graph for n ≥ 4.

Case 2. n = 3.

Let v1, v2 and v3 be the vertices of C3. To get the edge label q+1, q and q+1 should be the vertex

labels for two of the vertices of C3, say v1 = q = 3 and v2 = q+ 1 = 4. Also to obtain the edge label 2,

1 is to be a vertex label of a vertex of C3, say v3 = 1. Since the edge labels of the edges v1v3 and v2v3

are one and the same. Hence C3 is not a C-Geometric mean graph. 2
Theorem 2.2 A union of two cycles Cm and Cn is a C-Geometric mean graph if m ≥ 3 and n ≥ 3.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycles Cm and Cn respectively.

Case 1. m ≥ 4 or n ≥ 4.

Define f : V (Cm ∪ Cn) → {1, 2, 3, · · · ,m+ n+ 1} as follows:

f(ui) =





i, 1 ≤ i ≤

⌈√
m+ 2

⌉
− 2,

i+ 1,
⌈√
m+ 2

⌉
− 1 ≤ i ≤ m− 1,

f(um) = m+ 2,

f(vi) =





m− 1 + 2i, 1 ≤ i ≤

⌊
n
2

⌋
+ 1,

m+ 2n+ 4 − 2i,
⌊
n
2

⌋
+ 2 ≤ i ≤ n.

Then, the induced edge labeling is known as follows:

f∗(uiui+1) =





i+ 1, 1 ≤ i ≤
⌈√

m+ 2
⌉
− 2,

i+ 2,
⌈√
m+ 2

⌉
− 1 ≤ i ≤ m− 1,

f∗(u1, um) =
⌈√
m+ 2

⌉
,

f∗(vivi+1) =





m+ 2i, 1 ≤ i ≤
⌊
n
2

⌋
,

m+ n+ 1, i =
⌊
n
2

⌋
+ 1,

m+ 2n+ 3 − 2i,
⌊
n
2

⌋
+ 2 ≤ i ≤ n− 1

and f∗(v1vn) = m+ 3.

Hence, f is a C-Geometric mean labeling of the graph Cm ∪ Cn. Thus the graph Cm ∪ Cn is a

C-Geometric mean graph, for m ≥ 4 or n ≥ 4.
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Case 2. m = 3 and n = 3.

A C-Geometric mean labeling of C3 ∪ C3 is shown in Figure 3.r
r r

rr r1

3

5

4

3

2

4

6

7

7

6

5

Figure 3 A C-Geometric mean labeling of C3 ∪ C3.

This completes the proof. 2
Theorem 2.3 A graph Cm ∪ Pn is a C-Geometric mean graph if m ≥ 3 and n ≥ 2.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycle Cm and the path Pn

respectively.

Define f : V (Cm ∪ Pn) → {1, 2, 3, · · · ,m+ n} as follows:

f(ui) =





n+ 2i− 2, 1 ≤ i ≤

⌊
m
2

⌋
+ 1,

n+ 2m+ 3 − 2i,
⌊
m
2

⌋
+ 2 ≤ i ≤ m,

f(vi) = i, for 1 ≤ i ≤ n− 1 and

f(vn) = n+ 1.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =






n− 1 + 2i, 1 ≤ i ≤
⌊
m
2

⌋
,

m+ n, i =
⌊
m
2

⌋
+ 1,

n+ 2m+ 2 − 2i,
⌊
m
2

⌋
+ 2 ≤ i ≤ m− 1,

f∗(u1um) = n+ 2 and

f∗(vivi+1) = i+ 1, for 1 ≤ i ≤ n− 1.

Hence, f is a C-Geometric mean labeling of the graph Cm ∪ Pn. Thus the graph Cm ∪ Pn is a

C-Geometric mean graph, for m ≥ 3 and n ≥ 2. 2
Theorem 2.4 A graph C3 × Pn is a C-Geometric mean graph if n ≥ 4.

Proof Let V (C3 ×Pn) = {v(i)
1 , v

(i)
2 , v

(i)
3 ; 1 ≤ i ≤ n} be the vertex set of C3 ×Pn and E(C3×Pn) =

{v(i)
1 v

(i)
2 , v

(i)
2 v

(i)
3 , v

(i)
1 v

(i)
3 ; 1 ≤ i ≤ n} ∪ {v(i)

1 v
(i+1)
1 , v

(i)
2 v

(i+1)
2 , v

(i)
3 v

(i+1)
3 ; 1 ≤ i ≤ n− 1} be the edge set of

C3 × Pn.
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Define f : V (C3 × Pn) → {1, 2, 3, · · · , 6n− 2} as follows

f(v
(j)
1 ) =





9j − 8, 1 ≤ j ≤ 2,

8j − 11, 3 ≤ j ≤ 4,

f(v
(j)
2 ) =





6j − 3, 1 ≤ j ≤ 2,

2j + 11, 3 ≤ j ≤ 4,

f(v
(j)
3 ) =





5 + j, 1 ≤ j ≤ 2,

7j − 6, 3 ≤ j ≤ 4

and f(v
(j)
i ) = f(v

(j−3)
i ) + 18 for 1 ≤ i ≤ 3 and 5 ≤ j ≤ n. Then, the induced edge labeling is obtained

as follows:

f∗(v
(j)
1 v

(j)
2 ) =





2, j = 1,

5j, 2 ≤ j ≤ 3,

f∗(v
(j−3)
1 v

(j−3)
2 ) + 18, 4 ≤ j ≤ n,

f∗(v
(j)
2 v

(j)
3 ) =





3j + 2, 1 ≤ j ≤ 2,

5j + 1, 3 ≤ j ≤ 4,

f∗(v
(j−3)
2 v

(j−3)
3 ) + 18, 5 ≤ j ≤ n,

f∗(v
(j)
1 v

(j)
3 ) =






6j − 3, 1 ≤ j ≤ 2,

8j − 10, 3 ≤ j ≤ 4,

f∗(v
(j−3)
1 v

(j−3)
3 ) + 18, 5 ≤ j ≤ n,

f∗(v
(j)
1 v

(j+1)
1 ) =





8j − 4, 1 ≤ j ≤ 2

8j − 7, 3 ≤ j ≤ 4,

f∗(v
(j−3)
1 v

(j−2)
1 ) + 18, 5 ≤ j ≤ n− 1,

f∗(v
(j)
2 v

(j+1)
2 ) =





6, j = 1

5j + 3, 2 ≤ j ≤ 4,

f∗(v
(j−3)
2 v

(j−2)
2 ) + 18, 5 ≤ j ≤ n− 1,

f∗(v
(j)
3 v

(j+1)
3 ) =





4j + 3, 1 ≤ j ≤ 2,

5j + 4, 3 ≤ j ≤ 4

f∗(v
(j−3)
3 v

(j−2)
3 ) + 18, 5 ≤ j ≤ n− 1.

Hence f is a C-Geometric mean labeling of C3 × Pn. Thus the graph C3 × Pn is a C-Geometric

mean graph, for n ≥ 4. 2
Theorem 2.5 A graph Cn ⊙ Sm is a C-Geometric mean graph if n ≥ 3 and m ≤ 2.

Proof Let u1, u2, · · · , un be the vertices of the cycle Cn and let v
(i)
0 , v

(i)
1 , · · · , v(i)

m be the vertices
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of the star graph Sm such that v
(i)
0 is the central vertex of Sm, for 1 ≤ i ≤ n.

Case 1. m = 1.

Subcase 1.1
⌈√

2(2n+ 1)
⌉

is odd and n ≥ 5.

Define f : V (Cn ⊙ S1) → {1, 2, 3, · · · , 2n+ 1} as follows:

f(ui) =






2i, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
,

2i+ 1,

⌊√
2(2n+1)

2

⌋
+ 1 ≤ i ≤ i ≤ n,

f(v
(i)
1 ) =





2i− 1, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
,

2i,

⌊√
2(2n+1)

2

⌋
+ 1 ≤ i ≤ i ≤ n.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =





2i+ 1, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
− 1,

2i+ 2,

⌊√
2(2n+1)

2

⌋
+ 1 ≤ i ≤ i ≤ n− 1,

f∗(u1un) =
⌈√

2(2n+ 1)
⌉
,

f∗(uiv
(i)
1 ) =





2i, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
,

2i+ 1,

⌊√
2(2n+1)

2

⌋
+ 1 ≤ i ≤ n.

Subcase 1.2
⌈√

2(2n+ 1)
⌉

is even.

Define f : V (Cn ⊙ S2) → {1, 2, 3, · · · , 2n+ 1} as follows:

f(ui) =






2i, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
− 2,

2i− 1, i =

⌊√
2(2n+1)

2

⌋
− 1,

2i+ 1,

⌊√
2(2n+1)

2

⌋
≤ i ≤ i ≤ n,

f(v
(i)
1 ) =






2i− 1, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
− 2,

2i,

⌊√
2(2n+1)

2

⌋
− 1 ≤ i ≤ i ≤ n.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =






2i+ 1, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
− 1,

2i+ 2,

⌊√
2(2n+1)

2

⌋
≤ i ≤ i ≤ n− 1,
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f∗(u1un) =
⌈√

2(2n+ 1)
⌉

and f∗(uiv
(i)
1 ) =






2i, 1 ≤ i ≤
⌊√

2(2n+1)

2

⌋
− 1,

2i+ 1,

⌊√
2(2n+1)

2

⌋
≤ i ≤ n.

Hence, the graph Cn ⊙ S1, for n ≥ 4 admits a C-Geometric mean labeling.

For n = 3, a C-Geometric mean labeling of C3 ⊙ S1 is shown in Figure 4.ss
s s ss

1

2

2

4

7

7

6645
5

3

Figure 4 A C-Geometric mean labeling of C3 ⊙ S1.

Case 2. m = 2.

Subcase 2.1
⌈√

6n
⌉
≡ 0(mod 3).

Define f : V (Cn ⊙ S2) → {1, 2, 3, · · · , 3n+ 1} as follows:

f(ui) =





3i− 1, 1 ≤ i ≤
⌊√

6n
3

⌋
− 1,

3i,
⌊√

6n
3

⌋
≤ i ≤ n,

f(v
(i)
1 ) =





3i− 2, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i− 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f(v
(i)
2 ) =





3i, 1 ≤ i ≤
⌊√

6n
3

⌋
− 1,

3i+ 1,
⌊√

6n
3

⌋
≤ i ≤ n.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =





3i+ 1, 1 ≤ i ≤
⌊√

6n
3

⌋
− 1,

3i+ 2,
⌊√

6n
3

⌋
≤ i ≤ n− 1,

f∗(unu1) =
⌈√

6n
⌉
,

f∗(uiv
(i)
1 ) =





3i− 1, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f∗(uiv
(i)
2 ) =





3i, 1 ≤ i ≤

⌊√
6n
3

⌋
− 1,

3i+ 1,
⌊√

6n
3

⌋
≤ i ≤ n.
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Subcase 2.2
⌈√

6n
⌉
≡ 1(mod 3).

Define f : V (Cn ⊙ S2) → {1, 2, 3, · · · , 3n+ 1} as follows:

f(ui) =






3i− 1, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i+ 1, i =
⌊√

6n
3

⌋
+ 1,

3i,
⌊√

6n
3

⌋
+ 2 ≤ i ≤ n,

f(v
(i)
1 ) =





3i− 2, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i− 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f(v
(i)
2 ) =





3i, 1 ≤ i ≤

⌊√
6n
3

⌋
+ 1,

3i+ 1,
⌊√

6n
3

⌋
+ 2 ≤ i ≤ n.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =





3i+ 1, 1 ≤ i ≤

⌊√
6n
3

⌋
− 1,

3i+ 2,
⌊√

6n
3

⌋
≤ i ≤ n− 1,

f∗(unu1) =
⌈√

6n
⌉
,

f∗(uiv
(i)
1 ) =





3i− 1, 1 ≤ i ≤

⌊√
6n
3

⌋
,

3i,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f∗(uiv
(i)
2 ) =





3i, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i+ 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

Subcase 2.3
⌈√

6n
⌉
≡ 2(mod 3).

Define f : V (Cn ⊙ S2) → {1, 2, 3, · · · , 3n+ 1} as follows:

f(ui) =





3i− 1, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f(v
(i)
1 ) =





3i− 2, 1 ≤ i ≤

⌊√
6n
3

⌋
,

3i− 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f(v
(i)
2 ) =





3i, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i+ 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

Then, the induced edge labeling is obtained as follows:

f∗(uiui+1) =





3i+ 1, 1 ≤ i ≤

⌊√
6n
3

⌋
,

3i+ 2,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n− 1,

f∗(unu1) =
⌈√

6n
⌉
,
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f∗(uiv
(i)
1 ) =





3i− 1, 1 ≤ i ≤
⌊√

6n
3

⌋
,

3i,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n,

f∗(uiv
(i)
2 ) =





3i, 1 ≤ i ≤

⌊√
6n
3

⌋
,

3i+ 1,
⌊√

6n
3

⌋
+ 1 ≤ i ≤ n.

Hence, the graph Cn⊙S2, for n ≥ 3 admits a C-Geometric mean labeling. Thus the graph Cn⊙Sm
is a C-Geometric mean graph, for n ≥ 3 and m ≤ 2. 2
Theorem 2.6 A graph Ĝ(p1,m1, p2,m2, · · · ,mn−1, pn) is a C-Geometric mean graph if p1 6= 3.

Proof Let {v(j)
i ; 1 ≤ j ≤ n, 1 ≤ i ≤ pj} and {u(j)

i ; 1 ≤ j ≤ n − 1, 1 ≤ i ≤ mj} be the n number

of cycles and (n − 1) number of paths respectively. For 1 ≤ j ≤ n− 1, the jth cycle and jth path are

identified by a vertex v
(j)
pj+2

2

and u
(j)
1 while pj is even and v

(j)
pj+3

2

and u
(j)
1 while pj is odd and the jth

path and (j + 1)th cycle are identified by a vertex u
(j)
mj and v

(j+1)
1 .

Define f : V (Ĝ(p1,m1, p2, m2, · · · ,mn−1, pn)) →
{

1, 2, 3, · · · ,
n−1∑
j=1

(pj +mj) +pn − n + 2

}
as

follows:

If p1 is odd and p1 6= 3,

f
(
v
(1)
i

)
=






2i− 1, 1 ≤ i ≤ 2,

2i− 2, 3 ≤ i ≤
⌊
p1
2

⌋
+ 2,

2p1 + 5 − 2i,
⌊
p1
2

⌋
+ 3 ≤ i ≤ p1.

and if p1 is even,

f
(
v
(1)
i

)
=






3, j = 1,

2i, 2 ≤ j ≤
⌊
p1
2

⌋
,

2p1 + 3 − 2i,
⌊
p1
2

⌋
+ 1 ≤ j ≤ p1 − 1.

f
(
v
(1)
p1

)
= 1, f

(
u

(1)
i

)
= p1 + i, for 2 ≤ i ≤ m1. For 2 ≤ j ≤ n,

f(v
(j)
i ) =





j−1∑
k=1

(pk +mk) + 2i− j, 2 ≤ i ≤
⌊ pj

2

⌋
+ 1,

j−1∑
k=1

(pk +mk) + 2i− j − 1, i =
⌊ pj

2

⌋
+ 2 and pj is odd,

j−1∑
k=1

(pk +mk) + 2i− j − 3, i =
⌊ pj

2

⌋
+ 2 and pj is even,

j−1∑
k=1

(pk +mk) + 2pj − 2i− j − 5,
⌊ pj

2

⌋
+ 3 ≤ i ≤ pj

and for 3 ≤ j ≤ n,

f(u
(j−1)
i ) =

j−2∑

k=1

(pk +mk) + pj−1 + i+ 2 − j, for 2 ≤ i ≤ mj−1.

Then the induced edge labeling is obtained as follows:
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If p1 is odd and p1 6= 3,

f∗(v
(1)
i v

(1)
i+1) =





2i, 1 ≤ i ≤ 2,

2i− 1, 3 ≤ i ≤
⌊
p1
2

⌋
+ 1,

2p1 + 4 − 2i,
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1 − 1,

f∗(v(1)
p1 v

(1)
1 ) = 3.

and if p1 is even,

f∗(v
(1)
i v

(1)
i+1) =






4, j = 1,

2i+ 1, 2 ≤ i ≤
⌊
p1
2

⌋
,

2p1 + 2 − 2i,
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 2,

f∗(v
(1)
p1−1v

(1)
p1 ) = 3,

f∗(v(1)
p1 v

(1)
1 ) = 2,

f∗(u
(1)
i u

(1)
i+1) = p1 + i, 1 ≤ i ≤ m1 − 1

and for 2 ≤ j ≤ n,

f∗(v
(j)
i v

(j)
i+1) =





j−1∑
k=1

(pk +mk) + 2i− j + 1, 1 ≤ i ≤
⌊ pj

2

⌋
,

j−1∑
k=1

(pk +mk) + 2i− j + 1, i =
⌊ pj

2

⌋
+ 1 and pj is odd,

j−1∑
k=1

(pk +mk) + 2pj − 2i− j + 4, i =
⌊ pj

2

⌋
+ 1 and pj is even,

j−1∑
k=1

(pk +mk) + 2pj − 2i− j + 4,
⌊ pj

2

⌋
+ 2 ≤ i ≤ pj − 1,

f∗(v(j)
pj
v
(j)
1 ) =

j−1∑

k=1

(pk +mk) − j + 4

and

f∗(u
(j−1)
i u

(j−1)
i+1 ) =

j−2∑

k=1

(pk +mk) + pj−1 + i+ 3 − j, for 1 ≤ i ≤ mj−1 − 1 and 3 ≤ j ≤ n.

Hence, f is a C-Geometric mean labeling of Ĝ(p1,m1, p2,m2 · · · ,mn−1, pn). Thus the graph

Ĝ(p1,m1, p2,m2 · · · ,mn−1, pn) is a C-Geometric mean graph, for p1 6= 3. 2
Corollary 2.7 A graph G∗(p1, p2, · · · , pn) is a C-Geometric mean graph if p1 6= 3.

Theorem 2.8 A graph G′(p1, p2, · · · , pn) is a C-Geometric mean graph if all pj’s are odd and p1 6= 3

or all pj’s 1 ≤ j ≤ n are even.

Proof Let {v(j)
i ; 1 ≤ j ≤ n, 1 ≤ i ≤ pj} be the vertices of the n number of cycles.

Case 1. pj is odd and p1 6= 3 for 1 ≤ j ≤ n.

For 1 ≤ j ≤ n − 1, the jth and (j + 1)th cycles are identified by the edges v
(j)
pj+1

2

v
(j)
pj+3

2

and

v
(j+1)
1 v

(j+1)
pj+1 while j is odd and v

(j)
pj−1

2

v
(j)
pj+1

2

and v
(j+1)
1 v

(j+1)
pj+1 while j is even.
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Define f : V (G′(p1, p2, · · · , pn)) →
{

1, 2, 3, · · · ,
n∑
j=1

pj − n+ 2

}
as follows:

f(v
(1)
i ) =






3, i = 1,

2i, 2 ≤ i ≤
⌊
p1
2

⌋
+ 1,

2p1 + 3 − 2i,
⌊
p1
2

⌋
+ 2 ≤ i ≤ p1 − 1,

f(v(1)
p1 ) = 1

and for 2 ≤ j ≤ n,

f(v
(j)
i ) =






j−1∑
k=1

pk − j + 2i+ 2, 2 ≤ i ≤
⌊ pj

2

⌋
and j is even,

j−1∑
k=1

pk + 2pj + 3 − j − 2i,
⌊ pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j even,

j−1∑
k=1

pk − j + 2i+ 1, 2 ≤ i ≤
⌊ pj

2

⌋
+ 1 and j is odd,

j−1∑
k=1

pk + 2pj + 4 − j − 2i,
⌊ pj

2

⌋
+ 2 ≤ i ≤ pj − 1 and j odd.

The induced edge labeling is obtained as follows:

f∗(v
(1)
i v

(1)
i+1) =





4, i = 1,

2i+ 1, 2 ≤ i ≤
⌊
p1
2

⌋
,

2p1 + 2 − 2i
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 2,

f∗(v
(1)
p1−1v

(1)
p1 ) = 3, f∗(v(1)

p1 v
(1)
1 ) = 2

and for 2 ≤ j ≤ n,

f∗(v
(j)
i v

(j)
i+1) =






j−1∑
k=1

pk − j + 2i+ 3, 1 ≤ i ≤
⌊ pj

2

⌋
and j is even,

j−1∑
k=1

pk + 2pj + 2 − j − 2i,
⌊ pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j even,

j−1∑
k=1

pk − j + 2i+ 2, 1 ≤ i ≤
⌊ pj

2

⌋
and j is odd,

j−1∑
k=1

pk + 2pj + 3 − j − 2i,
⌊ pj

2

⌋
+ 1 ≤ i ≤ pj − 1 and j odd.

Case 2. pj is even for 1 ≤ j ≤ n.

For 1 ≤ j ≤ n−1, the jth and (j+1)th cycles are identified by the edges v
(j)
pj
2

v
(j)
pj+2

2

and v
(j+1)
1 v

(j+1)
pj+1 .

Define f : V (G′(p1, p2, · · · , pn)) →
{

1, 2, 3, · · · ,
n∑
j=1

pj − n+ 2

}
as follows:

f(v
(1)
i ) =





3, i = 1,

2i, 2 ≤ i ≤
⌊
p1
2

⌋
,

2p1 + 3 − 2i,
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 1,

f(v(1)
p1 ) = 1
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and for 2 ≤ j ≤ n,

f(v
(j)
i ) =





j−1∑
k=1

pk − j + 2i+ 1, 2 ≤ i ≤
⌊ pj

2

⌋
,

j−1∑
k=1

pk + 2pj + 4 − j − 2i,
⌊ pj

2

⌋
+ 1 ≤ i ≤ pj − 1.

The induced edge labeling is obtained as follows:

f∗(v
(1)
i v

(1)
i+1) =





4, i = 1,

2i+ 1, 2 ≤ i ≤
⌊
p1
2

⌋
,

2p1 + 2 − 2i,
⌊
p1
2

⌋
+ 1 ≤ i ≤ p1 − 2,

f∗(v
(1)
p1−1v

(1)
p1 ) = 3,

f∗(v(1)
p1 v

(1)
1 ) = 2

and for 2 ≤ j ≤ n,

f∗(v
(j)
i v

(j)
i+1) =





j−1∑
k=1

pk − j + 2i+ 2, 1 ≤ i ≤
⌊ pj

2

⌋
,

j−1∑
k=1

pk + 2pj + 3 − j − 2i,
⌊ pj

2

⌋
+ 1 ≤ i ≤ pj − 1.

Hence, f is a C-Geometric mean labeling of G′(p1, p2, . . . , pn). Thus the graph G′(p1, p2, . . . , pn)

is a C-Geometric mean graph, for p1 6= 3. 2
Theorem 2.9 A graph Pa,b is a C-Geometric mean graph if b ≤ 4 and a ≥ 2.

Proof Let v
(i)
0 , v

(i)
1 , v

(i)
2 , · · · , v(i)

a be the vertices of the ith copy of the path of length ‘a’ where

i = 1, 2, · · · , b, v(i)
0 = u and v

(i)
a = v, for all i. Clearly, |V (Pa,b)| = ab − b + 2 and |E(Pa,b)| = ab.

Consider a graph Pa,b with a ≥ 2.

Case 1. b = 2.

Notice that Pa,2 is a cycle of length more than 3. By Theorem 2.1, it admits a C-Geometric mean

labeling.

Case 2. b = 3.

Define f : V (Pa,3) → {1, 2, 3, · · · , 3a+ 1} as follows:

f(u) = a+ 1,

f(v) = 3a+ 1,

f(v
(1)
a−j) =





j, 1 ≤ j ≤
⌈√

3a+ 1
⌉
− 2,

j + 1,
⌈√

3a+ 1
⌉
− 1 ≤ j ≤ a− 1,

f(v
(i)
j ) = a+ i− 1 + 2j, for 2 ≤ i ≤ 3, 1 ≤ j ≤ a− 1.
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Then, the induced edge labeling is obtained as follows:

f∗(v
(1)
a−jv

(1)
a−j−1) =





j + 1, 1 ≤ j ≤

⌈√
3a+ 1

⌉
− 2,

j + 2,
⌈√

3a + 1
⌉
− 1 ≤ j ≤ a− 2,

f∗(vv
(1)
a−1) =

⌈√
3a+ 1

⌉
,

f∗(uv
(1)
1 ) = a+ 1,

f∗(vv
(i)
a−1) = 3a− 2 + i, for 2 ≤ i ≤ 3,

f∗(uv
(i)
1 ) = a+ i, for 2 ≤ i ≤ 3,

f∗(v
(i)
j v

(i)
j+1) = a+ i+ 2j, for 2 ≤ i ≤ 3 and 1 ≤ j ≤ a− 2.

Case 3. b = 4.

Consider a graph Pa,b with a ≥ 3. Define f : V (Pa,4) → {1, 2, 3, · · · , 4a+ 1} as follows:

f(u) = a+ 1,

f(v) = 4a + 1,

f(v
(1)
a−j) =





j, 1 ≤ j ≤
⌈√

4a + 1
⌉
− 2,

j + 1,
⌈√

4a+ 1
⌉
− 1 ≤ j ≤ a− 1,

f(v
(2)
j ) =





a+ 3j − 1, 1 ≤ j ≤ a− 1 and j is odd,

a+ 3j + 1, 1 ≤ j ≤ a− 1 and j is even,

f(v
(3)
j ) =





a+ 1 + 3j, 1 ≤ j ≤ a− 1 and j is odd,

a+ 3 + 3j, 1 ≤ j ≤ a− 1 and j is even

f(v
(4)
j ) =





a+ 3 + 3j, 1 ≤ j ≤ a− 1 and j is odd,

a− 1 + 3j, 1 ≤ j ≤ a− 1 and j is even.

Then, the induced edge labeling is obtained as follows:

f∗(v
(1)
a−jv

(1)
a−j−1) =





j + 1, 1 ≤ j ≤
⌈√

4a+ 1
⌉
− 2,

j + 2,
⌈√

4a+ 1
⌉
− 1 ≤ j ≤ a− 2,

f∗(v
(1)
a−1v) =

⌈√
4a+ 1

⌉
,

f∗(uv
(1)
1 ) = a+ 1,

f∗(uv
(i)
1 ) = a+ i, for 2 ≤ i ≤ 4

f∗(v
(i)
a−1v) = 4a− 3 + i, for 2 ≤ i ≤ 4 and

f∗(v
(i)
j v

(i)
j+1) =





a+ 2 + 3j, i = 2 and 1 ≤ j ≤ a− 2,

a+ 7 − i+ 3j 3 ≤ i ≤ 4 and 1 ≤ j ≤ a− 2.
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For a = 2, a C-Geometric mean labeling of P2,4 is as shown in Figure 5.

t ttt
tt

3 8

2

1

3

4

5

7

5 7
8

6

9

9

Figure 5 A C-Geometric mean labeling of P2,4

Hence, the graph Pa,b for b ≤ 4 admits a C-Geometric mean labeling. Thus the graph Pa,b for

b ≤ 4 is a C-Geometric mean graph. 2
Theorem 2.10 A graph P ba is a C-Geometric mean graph if b ≤ 3.

Proof Let yi, xij1, xij2, · · · , xiji, yi+1 be the vertices of the jth path of ith block of P ba , where

1 ≤ i ≤ a− 1 and 1 ≤ j ≤ b. Obviously,

V (P ba) = {yi; 1 ≤ i ≤ a}
⋃
(
a−1⋃

i=1

b⋃

j=1

{xijk; 1 ≤ k ≤ i}
)

E(P ba) =

a−1⋃

i=1

{yixij1 : 1 ≤ j ≤ b}
⋃
(
a−1⋃

i=1

b⋃

j=1

{xijkxij(k+1); 1 ≤ k ≤ i− 1}
)

⋃
(
a−1⋃

i=1

{xijiyi+1; 1 ≤ j ≤ b}
)

Hence, |V (P ba)| = ab(a−1)
2

+ a and |E(P ba)| = b(a−1)(a+2)
2

.

Case 1. b = 2.

Notice that the graph P 2
a is G∗(p1, p2, · · · , pn). Applying Corollary 2.9, P 2

a is a C-Geometric mean

graph for p1 6= 3.

Case 2. b = 3.

Define f : V (P 3
a ) →

{
1, 2, 3, · · · , 3(a−1)(a+2)

2
+ 1
}

as follows:

f(y1) = 3,

f(yi) =
3(i− 1)(i+ 2)

2
+ 1, for 2 ≤ i ≤ a,

f(x111) = 1,

f(x1j1) = j + 3, for 2 ≤ j ≤ 3,

f(x21k) = 4k + 5, for 1 ≤ k ≤ 2,

f(x22k) = 5k + 5, for 1 ≤ k ≤ 2,

f(x23k) = 13 − k, for 1 ≤ k ≤ 2
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and for 3 ≤ i ≤ a− 1,

f(xij1) =






3(i−1)(i+2)
2

+ 2 + j, 1 ≤ j ≤ 2,

3(i−1)(i+2)
2

+ 2j, j = 3,

f(xijk) =






3(i−1)(i+2)
2

+ 2j + 3k − 1 1 ≤ j ≤ 2, 2 ≤ k ≤ i− 1 and k is even,

3(i−1)(i+2)
2

+ 3k − 1, j = 3, 2 ≤ k ≤ i− 1 and k is even,

3(i−1)(i+2)
2

+ 2j + 3k − 3, 1 ≤ j ≤ 3, 2 ≤ k ≤ i− 1 and k is odd,

3(i−1)(i+2)
2

+ 3k − 1, j = 1, k = i and k is odd,

3(i−1)(i+2)
2

+ 3k + j, 2 ≤ j ≤ 3, k = i and k is odd,

3(i−1)(i+2)
2

+ 3k + j + 1, 1 ≤ j ≤ 2, k = i and k is even,

3(i−1)(i+2)
2

+ 3k − 1, j = 3, k = i and k is even.

Then, the induced edge labeling is as follows:

f∗(yixij1) =
3(i− 1)(i+ 2)

2
+ j + 1, for 1 ≤ j ≤ 3 and 2 ≤ i ≤ a− 1,

f∗(y1x1j1) =





2, j = 1,

j + 2, 2 ≤ j ≤ 3,

f∗(x1j1y2) =





3, j = 1,

j + 4, 2 ≤ j ≤ 3,

f∗(x2j1x2j2) =





2j + 9, 1 ≤ j ≤ 2,

12, j = 3,

f∗(x2j2y3) =





j + 14, 1 ≤ j ≤ 2,

14, j = 3

and for 3 ≤ i ≤ a− 1,

f∗(xijkxijk+1) =






3(i−1)(i+2)
2

+ 3k + 2j − 1, 1 ≤ k ≤ i− 1,

and 1 ≤ j ≤ 2,

3(i−1)(i+2)
2

+ 3k + 2, 1 ≤ k ≤ i− 1,

and j = 3,

and f∗(xijiyi+1) =





3i(i+3)
2

+ j − 2, 1 ≤ j ≤ 3 and i is odd,

3i(i+3)
2

+ j − 1, 1 ≤ j ≤ 2 and i is even,

3i(i+3)
2

− 1, j = 3 and i is even.

Hence, f is a C-Geometric mean labeling of P ba , for b ≤ 3. Thus the graph P ba for b ≤ 3 is a

C-Geometric mean graph. 2
Theorem 2.11 Let G be a graph obtained from a path by identifying any of its edges by an edge of

a cycle and none of the pendent edges is identified by an edge of a cycle of length 3. Then, G is a

C-Geometric mean graph.

Proof Let v1, v2, · · · , vp be the vertices of the path on p vertices. Let m be the number of cycles are
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placed in a path in order to get G and the edges of the jth cycle be identified with the edge (vij , vij+1)

of the path having the length nj and n1 6= 3 when i1 = 1. For 1 ≤ j ≤ m, the vertices of the jth cycle

be vij ,l, 1 ≤ l ≤ nj where vij ,1 = vij and vij ,nj = vij+1.

Define f : V (G) →
{

1, 2, 3, · · · ,
m∑
j=1

nj + p−m

}
as follows:

f(vk) = k, for 1 ≤ k ≤ i1,

f(vij ) = ij +

j−1∑

k=1

(nk − 2) + j − 1, for 1 ≤ j ≤ m,

f(vij+1) = f(vij ) + nj , for 1 ≤ j ≤ m,

f(vij+k) = f(vij+1) + k − 1, for 2 ≤ k ≤ ij+1 − ij − 1 and 1 ≤ j ≤ m− 1,

f(vim+k+1) = f(vim+k) + k − 1, for 2 ≤ k ≤ p− im

and for 1 ≤ j ≤ m,

f(vij ,l) =





f(vij ) + l − 1, 2 ≤ l ≤
⌈√

f(vij )f(vij+1)
⌉
− f(vij ) − 1,

f(vij ) + l,
⌈√

f(vij )f(vij+1)
⌉
− f(vij ) ≤ l ≤ nj − 1.

Then, the induced edge labeling is obtained as follows:

f∗(vkvk+1) = k + 1, for 1 ≤ k ≤ i1 − 1,

f∗(vij+kvij+k+1) = vij+k + 1, for 1 ≤ k ≤ ij+1 − ij − 1 and 1 ≤ j ≤ m− 1,

f∗(vim+kvim+k+1) = f(vim+k) + 1, for 1 ≤ k ≤ p− im − 1

and for 1 ≤ j ≤ m,

f∗(vij ,lvij ,l+1) =





f(vij ) + l, 1 ≤ l ≤

⌈√
f(vij )f(vij+1)

⌉
− f(vij ) − 1,

f(vij ) + l + 1,
⌈√

f(vij )f(vij+1)
⌉
− f(vij ) ≤ l ≤ nj − 1,

f∗(vij vij+1 ) =
⌈√

f(vij )f(vij+1 )
⌉
, for 1 ≤ j ≤ m.

Hence, the graph G admits a C-Geometric mean labeling. Thus the graph G is obtained from a

path by identifying any of its edges by an edge of a cycle and none of the pendent edges is identified

by an edge of a cycle of length 3, is a C-Geometric mean graph. 2
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Abstract: The Klein 4-group,denoted by V4 is an abelian group of order 4. It has elements

V4 = {0, a, b, c} with a+ a = b + b = c+ c = 0 and a + b = c, b+ c = a, c+ a = b. A graph

G(V (G), E(G) is said to be neighbourhood V4−magic if there exists a labeling f : V (G) →
V4\{0} such that the induced mapping N+

f : V (G) → V4 defined by N+
f (v) =

∑
u∈N(v) f(u)

is a constant map. If this constant is p(p 6= 0),we say that f is a p−neighbourhood V4−magic

labeling of G and G a p−neighbourhood V4−magic graph. If this constant is zero, we say

that f is a 0−neighghbourhood V4-magic labeling of G and G a 0−neighbourhood V4−magic

graph. In this paper, we discuss neighbourhood V4−magic labeling of some shadow graphs.

Key Words: Klein-4-group, shadow graphs, a-neighbourhood V4-magic graphs, 0-

neighbourhood V4-magic graphs, Smarandachely V4-magic.

AMS(2010): 05C78, 05C25.

§1. Introduction

Throughout this paper we consider simple, finite, connected and undirected graphs. For standard

terminology and notation we follow [1] and [2]. For a detailed survey on graph labeling we refer

[6]. The V4-magic graphs were introduced by S. M. Lee et al. in 2002 [3]. We say that, a graph

G = (V (G), E(G)), with vertex set V (G) and edge set E(G) is neighbourhood V4-magic if there

exists a labeling f : V (G) → V4\{0} such that the induced mapping N+
f : V (G) → V4 defined by

N+
f (v) =

∑
u∈N(v) f(u) is a constant map. Otherwise, it is said to be Smarandachely V4-magic, i.e.,∣∣∣

{
N+
f (v), v ∈ V (G)

}∣∣∣ ≥ 2. If this constant is p, where p is any non zero element in V4,then we say

that f is a p−neighbourhood V4-magic labeling of G and G is said to be a p−neighbourhood V4-magic

graph. If this constant is 0,then we say that f is a 0−neighbourhood V4-magic labeling of G and G is

said to be a 0−neighbourhood V4-magic graph. We divide the class of neighbourhood V4-magic graphs

into the following three categories:

(1) Ωa := the class of all a−neighbourhood V4-magic graphs;

(2) Ω0 := the class of all 0−neighbourhood V4-magic graphs, and

(3) Ωa,0 := Ωa ∩ Ω0.

The shadow graph Sh(G) of a connected graph G is constructed by taking two copies of G say

G1 and G2, join each vertex u in G1; to the neighbours of the corresponding vertex v in G2.The Bistar

1Received October 10, 2018, Accepted May 31, 2019.
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Bm,nis the graph obtained by joining the central vertex K1,m and K1,n by an edge [6]. The wheel graph

Wn is defined as Wn ≃ Cn +K1, where Cn for n ≥ 3 is a cycle of length n.The Helm Hn is a graph

obtained from the wheel graph Wn by attaching a pendant edge at each vertex of the cycle Cn [7].The

Sunflower SFn is obtained from a wheel with the central vertex w0 and cycle Cn = w1w2w3 · · ·wnw1

and additional vertices v1, v2, v3, · · · , vn where vi is joined by edges to wi and wi+1 where i+ 1 is taken

over modulo n [8].Jelly fish graphJ(m, n)is obtained from a 4−cycle w1w2w3w4w1 by joining w1 and

w3 with an edge and appending the central vertex of K1,m to w2 and appending the central vertex

of K1,n to w4 [6]. The graph P2�Pn is called Ladder, it is denoted by Ln [5].The graph with vertex

set{ui, vi : 0 ≤ i ≤ n + 1}and edge set {uiui+1, vivi+1 : 0 ≤ i ≤ n} ∪ {uivi : 1 ≤ i ≤ n} is called

the ladder Ln+2.The corona Pn ⊙K1 is called the comb graph CBn.The Book graph Bn is the graph

Sn�P2, where Sn is the star with n+1 vertices and P2 is the path on 2 vertices [5]. A gear graph Gn is

obtained from the wheel graph by adding a vertex between every pair of adjacent vertices of the cycle.

Gn has 2n + 1vertices and 3n edges [9]. This paper investigate neighbourhood V4−magic labeling of

shadow graphs of the above said graphs.

§2. Main Results

Theorem 2.1 The graph Sh(Cn) ∈ Ωa if and only if n ≡ 0(mod 4).

Proof Considering the shadow graph Sh(Cn), let {u1, u2, u3, · · · , un}be the vertex set of first copy

of Cn and let {v1, v2, v3, · · · , vn}be the corresponding vertex set of second copy of Cn in order. Assume

that n 6≡ 0(mod 4).Then either n ≡ 1(mod 4) or n ≡ 2(mod 4) or n ≡ 3(mod 4). We show that in each

these cases Sh(Cn) /∈ Ωa.

Case 1. n ≡ 1(mod 4)

In this case n = 4k + 1 for some k ∈ N. Then V (Sh(Cn)) = {ui, vi : 1 ≤ i ≤ 4k + 1}. If possible,

let Sh(Cn) ∈ Ωa with a labeling f. Then N+
f (u2) = a implies that f(u1) + f(v1) + f(u3) + f(v3) = a,

N+
f (u4) = a implies that f(u3) + f(v3) + f(u5) + f(v5) = a. Proceeding like this, N+

f (u4k) = a

implies that f(u4k−1) + f(v4k−1) + f(u4k+1) + f(v4k+1) = a. Now consider f(u1) + f(v1),then either

f(u1) + f(v1) = 0 or f(u1) + f(v1) = a or f(u1) + f(v1) = b or f(u1) + f(v1) = c.

Subcase 1.1 f(u1) + f(v1) = 0

If f(u1) + f(v1) = 0,then f(u3) + f(v3) = a, f(u5) + f(v5) = 0, f(u7) + f(v7) = a, which implies

that f(u4k+1) + f(v4k+1) = 0. Now N+
f (u1) = a implies that f(u2) + f(v2) = a, f(u4) + f(v4) =

0, f(u6) + f(v6) = a. Proceeding like this we get f(u4k) + f(v4k) = 0. Therefore,N+
f (u4k+1) = f(u1) +

f(v1) + f(u4k) + f(v4k) = 0 + 0 = 0, a contradiction.

Subcase 1.2 f(u1) + f(v1) = a

If f(u1) + f(v1) = a, then proceeding as in Subcase 1.1 we get N+
f (u4k+1) = f(u1) + f(v1) +

f(u4k) + f(v4k) = a+ a = 0, a contradiction.

Subcase 1.3 f(u1) + f(v1) = b

If f(u1)+f(v1) = b,then f(u3)+f(v3) = c, f(u5)+f(v5) = b, f(u7)+f(v7) = c, which implies that

f(u4k+1)+f(v4k+1) = b. Now,N+
f (u1) = a gives f(u2)+f(v2) = c, f(u4)+f(v4) = b, f(u4k)+f(v4k) = b.

Therefore,N+
f (u4k+1) = f(u1) + f(v1) + f(u4k) + f(v4k) = b+ b = 0, which is a contradiction.

Subcase 1.4 f(u1) + f(v1) = c
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If f(u1) + f(v1) = c, then proceeding as in Subcase 1.3 we get N+
f (u4k+1) = f(u1) + f(v1) +

f(u4k) + f(v4k) = c+ c = 0, a contradiction.

Thus if n ≡ 1(mod 4), we have Sh(Cn) /∈ Ωa.

Case 2. n ≡ 2(mod 4)

In this case n = 4k + 2 for some k ∈ N. Then V (Sh(Cn)) = {ui, vi : 1 ≤ i ≤ 4k + 2}. If

possible let Sh(Cn) ∈ Ωa with a labeling f. Considering f(u1) + f(v1), then either f(u1) + f(v1) = 0

or f(u1) + f(v1) = a or f(u1) + f(v1) = b or f(u1) + f(v1) = c.

Subcase 2.1 f(u1) + f(v1) = 0

If f(u1) + f(v1) = 0,then N+
f (u2) = a, f(u3) + f(v3) = a, f(u5) + f(v5) = 0, which implies that

f(u4k+1) + f(v4k+1) = 0. Therefore, N+
f (u4k+2) = f(u1) + f(v1) + f(u4k+1) + f(v4k+1) = 0 + 0 = 0, a

contradiction.

Subcase 2.2 f(u1) + f(v1) = a

If f(u1) + f(v1) = a, then proceeding as in Subcase 2.1 we get N+
f (u4k+2) = f(u1) + f(v1) +

f(u4k+1) + f(v4k+1) = a+ a = 0, which is a contradiction.

Subcase 2.3 f(u1) + f(v1) = b

If f(u1) + f(v1) = b,then N+
f (u2) = a implies that f(u3) + f(v3) = c, f(u5) + f(v5) = b, implies

that f(u4k+1)+f(v4k+1) = b. Therefore, N+
f (u4k+2) = f(u1)+f(v1)+f(u4k+1)+f(v4k+1) = b+b = 0,

which is a contradiction.

Subcase 2.4 f(u1) + f(v1) = c

If f(u1) + f(v1) = c, then proceeding as in Subcase 2.3 we get N+
f (u4k+2) = f(u1) + f(v1) +

f(u4k+1) + f(v4k+1) = c+ c = 0, a contradiction.

Thus if n ≡ 2(mod 4), Sh(Cn) /∈ Ωa.

Case 3. n ≡ 3(mod 4)

In this case n = 4k + 3 for some k ∈ N. Then V (Sh(Cn)) = {ui, vi : 1 ≤ i ≤ 4k + 3}. If

possible let Sh(Cn) ∈ Ωa with a labeling f. Considering f(u1) + f(v1), then either f(u1) + f(v1) = 0

or f(u1) + f(v1) = a or f(u1) + f(v1) = b or f(u1) + f(v1) = c.

Subcase 3.1 f(u1) + f(v1) = 0

If f(u1) + f(v1) = 0, then N+
f (u2) = a gives f(u3) + f(v3) = a, f(u5) + f(v5) = 0, f(u4k+1) +

f(v4k+1) = 0, f(u4k+3)+f(v4k+3) = a. Now, N+
f (u1) = a implies that f(u2)+f(v2) = 0, f(u4)+f(v4) =

a, f(u4k+2) + f(v4k+2) = 0. Therefore N+
f (u4k+3) = f(u1) + f(v1) + f(u4k+2) + f(v4k+2) = 0 + 0 = 0,

which is a contradiction.

Subcase 3.2 f(u1) + f(v1) = a

If f(u1) + f(v1) = a, then proceeding as in Subcase 3.1 we get N+
f (u4k+3) = f(u1) + f(v1) +

f(u4k+2) + f(v4k+2) = a+ a = 0, a contradiction.

Subcase 3.3 f(u1) + f(v1) = b

If f(u1)+f(v1) = b, then N+
f (u2) = a implies that f(u3)+f(v3) = c, f(u5)+f(v5) = b, f(u4k+1)+

f(v4k+1) = b, f(u4k+3)+f(v4k+3) = c. Now, N+
f (u1) = a implies that f(u2)+f(v2) = b, f(u4)+f(v4) =
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c, f(u4k+2) + f(v4k+2) = b. Therefore, N+
f (u4k+3) = f(u1) + f(v1) + f(u4k+2) + f(v4k+2) = b+ b = 0,

which is a contradiction.

Subcase 3.4 f(u1) + f(v1) = c

If f(u1) + f(v1) = c, then proceeding as in Subcase 3.3 we get N+
f (u4k+3) = f(u1) + f(v1) +

f(u4k+2) + f(v4k+2) = c+ c = 0, a contradiction.

Thus if n ≡ 3(mod 4), we also have Sh(Cn) /∈ Ωa. Therefore, n 6≡ 0(mod 4) implies that Sh(Cn) /∈
Ωa.

Conversely if n ≡ 0(mod 4), We define f : V (Sh(Cn)) → V4\{0} as:

f(ui) =




b if i ≡ 1, 2(mod 4),

c if i ≡ 0, 3(mod 4)
and f(vi) = a for 1 ≤ i ≤ n.

Then, f is an a−neighbourhood V4−magic labeling for Sh(Cn). This completes the proof of the theorem.2
Theorem 2.2 Sh(Cn) ∈ Ω0 for all n ≥ 3.

Proof The degree of each vertex in Sh(Cn)is 4. By labeling all the vertices by a, we get N+
f (u) = 0

for all u ∈ V (Sh(Cn)). 2
Corollary 2.3 Sh(Cn) ∈ Ωa,0 if and only if n ≡ 0(mod 4).

Proof The proof is obviously follows from Theorems 2.1 and 2.2. 2
Theorem 2.4 The graph Sh(Pn) ∈ Ω0 for all n ≥ 2.

Proof If we label all the vertices by a,we get G ∈ Ω0. 2
Theorem 2.5 Sh(Pn) ∈ Ωa for n ≡ 0, 2, 3(mod 4).

Proof Let G be the shadow graph Sh(Pn), and let {ui : 1 ≤ i ≤ n}and{vi : 1 ≤ i ≤ n} be the

vertex sets of first and second copy of Pn respectively.

Case 1. n ≡ 0(mod 4)

Define f : V (G) → V4\{0} as:

f(ui) =





a if i ≡ 0, 1(mod 4),

b if i ≡ 2, 3(mod 4),

f(vi) =





a if i ≡ 0, 1(mod 4),

c if i ≡ 2, 3(mod 4).

Case 2. n ≡ 2(mod 4)

Define f : V (G) → V4\{0} as:

f(ui) =




a if i ≡ 0, 3(mod 4),

b if i ≡ 1, 2(mod 4),
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f(vi) =




a if i ≡ 0, 3(mod 4),

c if i ≡ 1, 2(mod 4).

Case 3. n ≡ 3(mod 4)

Define f : V (G) → V4\{0} as:

f(ui) =





b if i ≡ 1, 2(mod 4),

a if i ≡ 0, 3(mod 4),

f(vi) =





c if i ≡ 1, 2(mod 4),

a if i ≡ 0, 3(mod 4).

In all the above cases, we have N+
f (ui) = N+

f (vi) = a for 1 ≤ i ≤ n. Therefore, Sh(Pn) ∈ Ωa for

n ≡ 0, 2, 3(mod 4). 2
Theorem 2.6 Sh(Pn) /∈ Ωa for n ≡ 1(mod 4).

Proof Consider the shadow graph Sh(Pn) with n ≡ 1(mod 4). Let {ui : 1 ≤ i ≤ 4k + 1}
and{vi : 1 ≤ i ≤ 4k + 1} be the vertex sets of first and second copy of Pn respectively. Assume

that Sh(Pn) ∈ Ωa with a labeling f. Since N+
f (u1) = a, we have either f(u2) = b and f(v2) = c

or f(u2) = c and f(v2) = b. Without loss of generality assume that f(u2) = b and f(v2) = c. Then

f(u4k) = f(v4k) implies that N+
f (u4k+1) = 0, a contradiction. Therefore, Sh(Pn) /∈ Ωa. 2

Corollary 2.7 Sh(Pn) ∈ Ωa,0 for n ≡ 0, 2, 3(mod 4).

Proof The proof directly follows from theorems 2.4 and 2.5. 2
Theorem 2.8 Sh(K1,n) ∈ Ωa for all n ∈ N.

Proof Let V = {ui, vi : 0 ≤ i ≤ n} be the vertex set of Sh(K1,n) where {ui : 0 ≤ i ≤ n} and

{vi : 0 ≤ i ≤ n} are the vertex sets of first and second copy of K1,n with apex u0, v0 respectively.

Define f : V → V4\{0} as:

f(ui) =




b if i = 0, 1,

a if i = 2, 3, · · · , n,

f(vi) =




c if i = 0, 1,

a if i = 2, 3, · · · , n.

Then, N+
f (ui) = N+

f (vi) = a for all 0 ≤ i ≤ n. This completes the proof. 2
Theorem 2.9 Sh(K1,n) ∈ Ω0 for all n ∈ N.

Proof If we label all the vertices by a,we get Sh(K1,n) ∈ Ω0. 2
Corollary 2.10 Sh(K1,n) ∈ Ωa,0 for all n ∈ N.

Proof The proof obviously follows from Theorems 2.8 and 2.9. 2
Theorem 2.11 Sh(Bm,n) ∈ Ω0 for all m and n.
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Proof Labeling all the vertices by a, we get Sh(Bm,n) ∈ Ω0 for all m and n. 2
Theorem 2.12 Sh(Bm,n) ∈ Ωa for all m > 1 and n > 1.

Proof Let V1 = {u, v, u1, u2, · · · , um, v1, v2, v3, · · · , vn} be the vertex set of first copy of Bm,n and

V2 = {u′, v′, u′
1, u

′
2, · · · , u′

m, v
′
1, v

′
2, v

′
3, · · · , v′n} be the corresponding vertex set of second copy of Bm,n,

where ui, vi are pendant vertices adjacent to u, v respectively. Then V (Sh(Bm,n)) = V1 ∪ V2.

Define f : V (Sh(Bm,n)) → V4\{0} as:

f(u) = f(v) = b;

f(u′) = f(v′) = c;

f(ui) = f(u′
i) = a for 1 ≤ i ≤ m;

f(vi) = f(v′i) = a for 1 ≤ i ≤ n.

Then, f is an a−neighbourhod labeling of Sh(Bm,n). This completes the proof. 2
Corollary 2.13 Sh(Bm,n) ∈ Ωa,0 for all m > 1 and n > 1.

Proof The proof follows from Theorems 2.11 and 2.12. 2
Theorem 2.14 Sh(Wn) ∈ Ω0 for all n ≥ 3.

Proof The degree of a vertex in Sh(Wn) is either 6 or 2n. If we label all the vertices by a, we get

N+
f (u) = 0 for all u ∈ V (Sh(Wn)). 2

Theorem 2.15 Sh(Wn) ∈ Ωa for all n ≡ 1(mod 2).

Proof Let V1 = {u0, u1, u2, · · · , un} be the vertex set of first copy of Wn with central vertex u0

and let V2 = {v0, v1, v2, · · · , vn} be the corresponding vertex set of second copy of Wnwith central

vertex v0. Then, V = V (Sh(Wn)) = V1 ∪ V2. Define f : V → V4\{0} as:

f(ui) = b if i = 0, 1, 2, 3, · · · , n,

f(vi) = c if i = 0, 1, 2, 3, · · · , n.

Then, N+
f (ui) = N+

f (vi) = a for all i = 0, 1, 2, · · · , n. 2
Corollary 2.16 Sh(Wn) ∈ Ωa,0 for all n ≡ 1(mod 2).

Proof The proof directly follows from Theorems 2.14 and 2.15. 2
Theorem 2.17 Sh(Wn) ∈ Ωa for all n ≡ 2(mod 4).

Proof Let V1 = {u0, u1, u2, · · · , un} be the vertex set of first copy of Wn with central vertex

u0 and let V2 = {v0, v1, v2, · · · , vn} be the vertex set of second copy with central vertex v0.Then

V (Sh(Wn)) = V1 ∪ V2. Define f : V (Sh(Wn)) → V4\{0} as:

f(ui) =




a if i ≡ 1, 3(mod 4),

c if i ≡ 0, 2(mod 4),
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f(vi) =




a if i ≡ 1, 3(mod 4),

b if i ≡ 0, 2(mod 4).

Clearly, N+
f (ui) = N+

f (vi) = a for all i = 0, 1, 2, . . . , n. Hence Sh(Wn) ∈ Ωa. 2
Corollary 2.18 Sh(Wn) ∈ Ωa,0 for all n ≡ 2(mod 4).

Proof The proof directly follows from Theorems 2.14 and 2.17. 2
Theorem 2.19 Sh(Hn) ∈ Ω0 for all n ≥ 3.

Proof In Sh(Hn), degree of vertices are either 2 or 8 or 2n. If we label all the vertices by a, we

get N+
f (u) = 0 for all u ∈ V (Sh(Hn)). 2

Theorem 2.20 Sh(Hn) admits a−neighbourhood V4−magic labeling for all n ≡ 1(mod 2).

Proof Consider the shadow graph Sh(Hn). Let v be central vertex,v1, v2, v3, · · · , vn be the rim

vertices and u1, u2, u3, · · · , un be the pendant vertices adjacent to v1, v2, v3, · · · , vn in the first copy of

Hn and let v′, v′1, v
′
2, v

′
3, · · · , v′n, u′

1, u
′
2, u

′
3, · · · , u′

n be the corresponding vertices in the second copy of

Hn. Then V (Sh(Hn)) = {v, v′, vi, v′i, ui, u′
i : 1 ≤ i ≤ n}. We define f : V (Sh(Hn)) → V4\{0} as:

f(v) = a and f(vi) = f(ui) = b for i = 1, 2, 3, . . . , n,

f(v′) = a and f(v′i) = f(u′
i) = c for i = 1, 2, 3, . . . , n.

Obviously, f is an a−neighbourhood V4−magic labeling of Sh(Hn). 2
Corollary 2.21 Sh(Hn) ∈ Ωa,0 for all n ≡ 1(mod 2).

Proof The proof directly follows from Theorems 2.19 and 2.20. 2
Theorem 2.22 Sh(SFn) admits a−neighbourhood V4−magic labeling for all n ≡ 2(mod 4).

Proof Considering Sh(SFn), let the vertex set of first copy of SFn be V1 = {w,wi, vi : 1 ≤ i ≤ n}
where w is the central vertex, w1, w2, w3, · · · , wn are vertices of the cycle and vi is the vertex joined

by edges to wi and wi+1 where i+ 1 is taken over modulo n. Let V2 = {w′, w′
i, v

′
i : 1 ≤ i ≤ n} be the

corresponding vertex set of second copy of SFn. Then V (Sh(SFn)) = V1∪V2. Define f : V (Sh(SFn)) →
V4\{0} as:

f(wi) =





b if i ≡ 1(mod 2),

c if i ≡ 0(mod 2),

f(vi) =




b if i ≡ 1(mod 2),

c if i ≡ 0(mod 2),

f(w) = f(w′) = f(w′
i) = f(v′i) = a for i = 1, 2, 3, · · · , n.

Then f is an a−neighbourhood V4−magic labeling of Sh(SFn). 2
Theorem 2.23 Sh(SFn) admits 0−neighbourhood V4−magic labeling for all n.

Proof If we label all the vertices by a, we get N+
f (u) = 0 for all u ∈ V (Sh(SFn)). 2
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Theorem 2.24 Sh(SFn) ∈ Ωa,0 for all n ≡ 2(mod 4).

Proof The proof is obviously follows from Theorems 2.22 and 2.23. 2
Theorem 2.25 Sh(Cn ⊙K2) ∈ Ωa for all n ≡ 0(mod 4).

Proof Let G bet the shadow graph Sh(Cn ⊙K2). Let V1 = {ui, vi, wi : 1 ≤ i ≤ n} be the vertex

set of first copy of Cn ⊙K2, where u′
is are vertices of Cn and vj , wj are the vertices on jth copy of K2

and let V2 = {u′
i, v

′
i, w

′
i : 1 ≤ i ≤ n} be the corresponding vertex set of second copy of Cn ⊙K2. Then

V (G) = V1 ∪ V2. Define f : V (G) → V4\{0} as:

f(ui) =




b if i ≡ 1, 2(mod 4),

c if i ≡ 0, 3(mod 4),

f(vi) =




c if i ≡ 1, 2(mod 4),

b if i ≡ 0, 3(mod 4),

f(wi) =




c if i ≡ 1, 2(mod 4),

b if i ≡ 0, 3(mod 4),

f(u′
i) = f(v′i) = f(w′

i) = a for i = 1, 2, 3, · · · , n.
Then f is an a−neighbourhood V4−magic labeling of Sh(Cn ⊙K2). 2
Theorem 2.26 Sh(Cn ⊙K2) ∈ Ω0 for all n.

Proof By labeling all the vertices of Sh(Cn ⊙K2) by a,we get N+
f (u) = 0. 2

Corollary 2.27 Sh(Cn ⊙K2) ∈ Ωa,0 for all n ≡ 0(mod 4).

Proof The proof follows from Theorems 2.25 and 2.26. 2
Theorem 2.28 Sh(Cn ⊙Km) ∈ Ωa for all m and n ≥ 3.

Proof Let G be the shadow graph Sh(Cn ⊙ Km). Let u1, u2, u3, · · · , un be the rim vertices of

first copy of Cn ⊙ Km and {ui1, ui2, ui3, · · · , uim} be the set of pendant vertices adjacent to ui for

1 ≤ i ≤ n in Cn ⊙Km and let u′
1, u

′
2, u

′
3, · · · , u′

n be the rim vertices of second copy of Cn ⊙Km and

{u′
i1, u

′
i2, u

′
i3, · · · , u′

im} be the set of pendant vertices adjacent to u′
i for 1 ≤ i ≤ n in second copy of

Cn ⊙Km. Here we consider two cases.

Case 1. m = 1

Define f : V (G) → V4\{0} as:

f(ui) = f(ui,1) = b for i = 1, 2, 3, · · · , n.

f(u′
i) = f(u′

i,1) = c for i = 1, 2, 3, · · · , n.

Case 2. m ≥ 2

Define f : V (G) → V4\{0} as:

f(ui) = b for i = 1, 2, 3, · · · , n.



94 Vineesh K.P. and Anil Kumar V.

f(u′
i) = c for i = 1, 2, 3, · · · , n.

f(u′
ij) = a for i = 1, 2, 3, · · · , n.

f(uij) =





b if j = 1,

c if j = 2,

a if j > 2.

Obviously, f is an a−neighbourhood V4−magic labeling of Sh(Cn ⊙Km). 2
Theorem 2.29 Sh(Cn ⊙Km) ∈ Ω0 for all m and n ≥ 3.

Proof Labeling all the vertices by a,we get Sh(Cn ⊙Km) ∈ Ω0. 2
Corollary 2.30 Sh(Cn ⊙Km) ∈ Ωa,0 for all m and n ≥ 3.

Proof The proof directly follows from Theorems 2.28 and 2.29. 2
Theorem 2.31 Sh(J(m, n)) ∈ Ω0 for all m and n.

Proof Labeling all the vertices by a, we get Sh(J(m,n)) ∈ Ω0. 2
Theorem 2.32 Sh(J(m, n)) ∈ Ωa for all m and n.

Proof Let G be the graph Sh(J(m,n)). Let V1 = {wi, uj , vk : 1 ≤ i ≤ 4, 1 ≤ j ≤ m, 1 ≤ k ≤ n}
and E1 = {w1w2, w2w3, w3w4, w4w1, w1w3} ∪ {w2uj : 1 ≤ j ≤ m} ∪ {w4vj : 1 ≤ j ≤ n} be the vertex

and edge set of first copy of J(m,n) and let V2 = {w′
i, u

′
j , v

′
k : 1 ≤ i ≤ 4, 1 ≤ j ≤ m, 1 ≤ k ≤ n} be the

corresponding vertex set of second copy of J(m,n). Then V (G) = V1 ∪ V2. Define f : V (G) → V4\{0}
as:

f(wi) = b for i = 1, 2, 3, 4;

f(w′
i) = c for i = 1, 2, 3, 4;

f(ui) =




b if i = 1,

a if i ≥ 2,
f(u′

i) =




c if i = 1,

a if i ≥ 2,

f(vi) =




b if i = 1,

a if i ≥ 2,
f(v′i) =




c if i = 1,

a if i ≥ 2.

Then, f is an a−neighbourhood V4−magic labeling of Sh(J(m,n)). 2
Corollary 2.33 Sh(J(m, n)) ∈ Ωa,0 for all m and n.

Proof The proof directly follows from Theorems 2.31 and 2.32. 2
Theorem 2.34 Sh(Ln) ∈ Ω0 for all n.

Proof By labeling all the vertices by a,we get Sh(Ln) ∈ Ω0 for all n. 2
Theorem 2.35 Sh(Ln) ∈ Ωa for all n ≡ 2(mod 3).
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Proof Consider Sh(Ln) with n ≡ 2(mod 3). Let V1 = {ui, vi : 1 ≤ i ≤ n} be the vertex set of first

copy of Ln with edge set E1 = {uiui+1, vivi+1, ujvj : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n}. Also let V2 = {u′
i, v

′
i :

1 ≤ i ≤ n} be the corresponding set of vertices in second copy of Ln. Then V = V (Sh(Ln)) = V1 ∪ V2.

Define f : V → V4\{0} as:

f(ui) =






b if i ≡ 1, 2(mod 6),

c if i ≡ 4, 5(mod 6),

a if i ≡ 0, 3(mod 6),

f(vi) =





c if i ≡ 1, 2(mod 6),

b if i ≡ 4, 5(mod 6),

a if i ≡ 0, 3(mod 6),

f(u′
i) = a for i = 1, 2, 3, · · · , n,

f(v′i) = a for i = 1, 2, 3, · · · , n.

Then, f is an a-neighbourhood V4−magic labeling of Sh(Ln). 2
Corollary 2.36 Sh(Ln) ∈ Ωa,0 for all n ≡ 2(mod 3).

Proof The proof directly follows from Theorems 2.34 and 2.35. 2
Theorem 2.37 Sh(Ln+2) ∈ Ω0 for all n ∈ N.

Proof By labeling all the vertices by a,we get Sh(Ln+2) ∈ Ω0 for all n. 2
Theorem 2.38 Sh(Ln+2) ∈ Ωa for all n ∈ N.

Proof Let G be the shadow graph Sh(Ln+2). Let V1 = {ui, vi : 0 ≤ i ≤ n + 1} and E1 =

{uiui+1, vivi+1 : 0 ≤ i ≤ n} ∪ {uivi : 1 ≤ i ≤ n} be the vertex and edge set of first copy of Ln+2 and

let V2 = {u′
i, v

′
i : 0 ≤ i ≤ n + 1} be the corresponding set of vertices in second copy of Ln+2. Define

f : V (Sh(Ln+2)) → V4\{0} as:

f(ui) = f(vi) = b for i = 0, 1, 2, 3, · · · , n+ 1,

f(u′
i) = f(v′i) = c for i = 0, 1, 2, 3, · · · , n+ 1,

Then, N+
f (u) = a for all vertices u in Sh(Ln+2). 2

Corollary 2.39 Sh(Ln+2) ∈ Ωa,0 for all n ∈ N.

Proof The proof directly follows from Theorems 2.37 and 2.38. 2
Theorem 2.40 Sh(CBn) ∈ Ωa for all n > 1.

Proof Let {ui, vi : 1 ≤ i ≤ n} be the vertex set of first copy of CBn where vi (1 ≤ i ≤ n) are

the pendant vertices adjacent to ui (1 ≤ i ≤ n). Let {u′
i, v

′
i : 1 ≤ i ≤ n} be the corresponding set of
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vertices in second copy of CBn. Define f : V (Sh(CBn)) → V4\{0} as

f(ui) = b if 1 ≤ i ≤ n;

f(u′
i) = c if 1 ≤ i ≤ n;

f(vi) =





a if i = 1 or n,

b if 1 < i < n,

f(v′i) =





a if i = 1 or n,

c if 1 < i < n.

Then f is an a−neighbourhood V4−magic labeling of CBn. 2
Theorem 2.41 Sh(CBn) ∈ Ω0 for all n ∈ N.

Proof By labeling all the vertices by a,we get Sh(CBn) ∈ Ω0. 2
Corollary 2.42 Sh(CBn) ∈ Ωa,0 for all n > 1.

Proof The proof directly follows from Theorems 2.40 and 2.41. 2
Theorem 2.43 Sh(Km,n) ∈ Ωa for all m > 1 and n > 1.

Proof LetG be the shadow graph Sh(Km,n). LetX = {u1, u2, u3, · · · , um} and Y = {v1, v2, v3, · · · , vn}
be the bipartition of the first copy ofKm,n and letX ′ = {u′

1, u
′
2, u

′
3, . . . , u

′
m} and Y ′ = {v′1, v′2, v′3, . . . , v′n}

be the corresponding bipartition second copy of Km,n. Define f : V (G) → V4\{0} as:

f(ui) =






b if i = 1,

c if i = 2,

a if i > 2,

f(vj) =






b if j = 1,

c if j = 2,

a if j > 2,

f(u′
i) = a for 1 ≤ i ≤ m and f(v′j) = a for 1 ≤ j ≤ n.

Then f is an a−neighbourhood V4−magic labeling of Sh(Km,n). This completes the proof of the

theorem. 2
Theorem 2.44 Sh(Km,n) ∈ Ω0 for all m,n ∈ N.

Proof Labeling all the vertices by a, we get Sh(Km,n) ∈ Ω0. 2
Corollary 2.45 Sh(Km,n) ∈ Ωa,0 for all m > 1 and n > 1.

Proof The proof directly follows from Theorems 2.43 and 2.44. 2
Theorem 2.46 Sh(Bn) ∈ Ωa for all n ≡ 1(mod 2).

Proof LetG be the shadow graph Sh(Bn). Let vertex set of first copy of Bn be V1 = {(u, vj), (ui, vj) :

1 ≤ i ≤ n, 1 ≤ j ≤ 2}, where {u, u1, u2, u3, · · · , un} and {v1, v2} be the vertex sets of Sn and P2 re-

spectively, and u be the central vertex, u′
is are pendant vertices in Sn. Also let V2 = {(u′, v′j), (u

′
i, v

′
j) :

1 ≤ i ≤ n, 1 ≤ j ≤ 2} be the corresponding vertex set of second copy of Bn. Then V (G) = V1 ∪ V2.
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Define f : V (G) → V4\{0} as:

f(u, vj) =





b if j = 1,

c if j = 2,
and f(ui, vj) =





b if j = 1 and 1 ≤ i ≤ n,

c if j = 2 and 1 ≤ i ≤ n,

f(u′, v′j) = a for j = 1, 2 and f(u′
i, v

′
j) = a for 1 ≤ i ≤ n, 1 ≤ j ≤ 2.

Clearly, f is an a−neighbourhood V4−magic labeling of Sh(Bn). 2
Theorem 2.47 Sh(Bn) ∈ Ω0 for all n ∈ N.

Proof By labeling all the vertices by a, we get Sh(Bn) ∈ Ω0. 2
Corollary 2.48 Sh(Bn) ∈ Ωa,0 for all n ≡ 1(mod 2).

Proof The proof follows from Theorems 2.46 and 2.47. 2
Theorem 2.49 Sh(Gn) ∈ Ω0 for all n.

Proof The degree of vertices in Sh(Bn) is either 4 or 6 or 2n. If we label all the vertices by a, we

get N+
f (u) = 0 for all u ∈ V (Sh(Gn)). 2

Theorem 2.50 Sh(Gn) ∈ Ωa for all n ≡ 2(mod 4).

Proof Let G be the shadow graph Sh(Gn). Let V1 = {u, ui : 1 ≤ i ≤ 2n} and E1 = {uu2i−1 :

1 ≤ i ≤ n} ∪ {uiui+1 : 1 ≤ i ≤ 2n − 1} ∪ {u2nu1} be the vertex and edge set of first copy of Gn. Let

V2 = {u′, u′
i : 1 ≤ i ≤ 2n} be the corresponding vertex set of second copy of Gn.Then V (G) = V1 ∪ V2.

Define f : V (G) → V4\{0} as:

f(u) = b, f(u′) = c and f(ui) = a for 1 ≤ i ≤ 2n,

f(u′
i) =






a if i ≡ 0(mod 4),

b if i ≡ 1(mod 4),

a if i ≡ 2(mod 4),

c if i ≡ 3(mod 4).

Then f is an a−neighbourhood V4−magic labeling for Sh(Gn). 2
Corollary 2.51 Sh(Gn) ∈ Ωa,0 for all n ≡ 2(mod 4).

Proof The proof directly follows from Theorems 2.49 and 2.50. 2
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§1. Introduction

We begin with the finite, connected and undirected graph G = (V (G), E(G)) without multiple edges

and loops. For a vertex v ∈ V (G), the open neighborhood N(v) of v is defined as N(v) = {u ∈
V (G)/uv ∈ E(G)} and the closed neighborhood N [v] = {v} ∪N(v). We denote the degree of a vertex

v ∈ V (G) in a graph G by dG(v). The minimum degree among the vertices of G is denoted by δ(G)

and the maximum degree among the vertices of G is denoted by ∆(G). For any real number n, ⌊n⌋
denotes the greatest integer not greater than that n and ⌈n⌉ denotes the smallest integer not less than

that n. For the various graph theoretic notations and terminology, we follows West [8] and Haynes et

al. [3].

Definition 1.1 The triangular snake Tn is obtained from the path Pn by replacing every edge of a path

by a triangle C3.

Definition 1.2 An alternate triangular snake ATn is obtained from a path Pn with vertices u1, u2, · · · , un
by joining ui and ui+1 (alternately) to a new vertex vi. That is every alternate edge of a path is replaced

by C3.

Definition 1.3 The double triangular snake D(Tn) is obtained from a path Pn with vertices v1, v2, · · · , vn
by joining vi and vi+1 to a new vertex wi for i = 1, 2, · · · , n − 1 and to a new vertex ui for i =

1, 2, · · · , n− 1.

Definition 1.4 A double alternate triangular snake D(ATn) consists of two alternate triangular snakes

which have a common path.

1Received November 21, 2018, Accepted June 3, 2019.
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A packing of a graph G is a set of vertices whose closed neighborhoods are pairwise disjoint.

Generally, a Smarandache k-packing of a graph G is a set of vertices whose closed neighborhoods

intersect just in k vertices, and disjoint if k = 0. Equivalently, a packing of a graph G is a set of

vertices whose elements are pairwise at distance at least 3 apart in G. The maximum cardinality of a

packing set of G is called the packing number and it is denoted by ρ(G). This concept was introduced

by Biggs [1].

A subset S of V (G) is an open packing of G if the open neighborhoods of the vertices of S are

pairwise disjoint in G. The maximum cardinality of an open packing set is called the open packing

number and is denoted by ρo. This concept was introduced by Henning and Slater [5]. A brief account

of on open packing and its related concepts can be found in [2,4,6,7]. In the present paper, we obtain

the packing and open packing number of various snakes.

§2. Main Results

Theorem 2.1 For n ≥ 3, ρ(G) =
⌈n

3

⌉
, where G is triangular snake Tn and double triangular snake

D(Tn).

Proof The triangular snake Tn is obtained from a path Pn with vertices v1, v2, · · · , vn by joining

vi and vi+1 to a new vertex wi for i = 1, 2, 3, · · · , n − 1 while to construct double triangular snake

D(Tn) from a path Pn with vertices v1, v2, · · · , vn by joining vi and vi+1 to a new vertex wi for

i = 1, 2, 3, · · · , n− 1 and to a new vertex ui for i = 1, 2, · · · , n− 1.

If S is any packing set of G then it is obvious that v1 must in S as dG(v1) = 2 = δ(G).

We construct a set S of vertices as follows:

S =
{
v3i+1/0 ≤ i ≤

⌈n
3

⌉
− 1
}

Then |S| =
⌈n

3

⌉
. Moreover S is a packing set of G as N [v] ∩ N [u] 6= φ for all v, u ∈ S. For any

w ∈ V (G) − S, N [v] ∩ N [w] 6= φ and N [u] ∩ N [w] 6= φ. Thus, S is a maximal packing set of G.

Therefore any superset containing the vertices greater than that of |S| can not be a packing set of G.

Hence

ρ(G) =
⌈n

3

⌉
. 2

Theorem 2.2 For n ≥ 3, ρo(G) =
⌈n

3

⌉
, where G is triangular snake Tn and double triangular snake

D(Tn).

Proof The triangular snake Tn is obtained from a path Pn with vertices v1, v2, · · · , vn by joining

vi and vi+1 to a new vertex wi for i = 1, 2, 3, · · · , n − 1 while to construct double triangular snake

D(Tn) from a path Pn with vertices v1, v2, · · · , vn by joining vi and vi+1 to a new vertex wi for

i = 1, 2, 3, · · · , n− 1 and to a new vertex ui for i = 1, 2, · · · , n− 1.

If S is any open packing set of G then it is obvious that v1 must in S as dG(v1) = 2 = δ(G).

We construct a set S of vertices as follows:

S =
{
v3i+1/0 ≤ i ≤

⌈n
3

⌉
− 1
}

Then |S| =
⌈n

3

⌉
. Moreover S is an open packing set of G as N(v)∩N(u) 6= φ for all v, u ∈ S. For any

w ∈ V (G)− S, N(v) ∩N(w) 6= φ and N(u) ∩N(w) 6= φ. Thus, S is a maximal open packing set of G.

Therefore any superset containing the vertices greater than that of |S| can not be an open packing set
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of G. Hence

ρo(G) =
⌈n

3

⌉
. 2

Illustration 2.3 The graph T7 and its packing number and open packing number are shown Figure 1

while the graph D(T7) and its packing number and open packing number are shown in Figure 2.

Figure 1 ρ(T7) = ρo(T7) = 3

Figure 2 ρ(D(T7)) = ρo(D(T7)) = 3

Theorem 2.4 For n > 3, ρ(G) =
⌈n

3

⌉
, where G is alternate triangular snake ATn and double alternate

triangular snake D(ATn).

Proof An alternate triangular snake ATn is obtained from a path Pn with vertices v1, v2, · · · , vn
by joining vi and vi+1 (alternately) to a new vertex wi, i = 1, 2, · · · , n− 1 while to construct a double

alternate triangular snake D(ATn) from a path Pn with vertices v1, v2, · · · , vn by joining vi and vi+1

(alternately) to a new vertex wi, i = 1, 2, · · · , n− 1 and to a new vertex ui for i = 1, 2, · · · , n− 1.

If S is any packing set of G then it is obvious that v1 must in S as

dG(v1) = δ(G) =





1, if n is odd,

2, if n is even.

We construct a set S of vertices as follows:

S =
{
v3i+1/0 ≤ i ≤

⌈n
3

⌉
− 1
}

Then |S| =
⌈n

3

⌉
. Moreover S is a packing set of G as N [v] ∩ N [u] 6= φ for all v, u ∈ S. For any

w ∈ V (G) − S, N [v] ∩ N [w] 6= φ and N [u] ∩ N [w] 6= φ. Thus, S is a maximal packing set of G.

Therefore any superset containing the vertices greater than that of |S| can not be a packing set of G.

Hence

ρ(G) =
⌈n

3

⌉
. 2

Illustration 2.5 The graph AT7 and its packing number is shown Figure 3 while the graph D(AT7)
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and its packing number is shown in Figure 4.

Figure 3 ρ(AT7) = 3

Figure 4 ρ(D(AT7)) = 3

Theorem 2.6 For n > 3, ρo(G) =
⌈n

2

⌉
, where G is alternate triangular snake ATn and double

alternate triangular snake D(ATn).

Proof An alternate triangular snake ATn is obtained from a path Pn with vertices v1, v2, · · · , vn
by joining vi and vi+1 (alternately) to a new vertex wi, i = 1, 2, · · · , n− 1 while to construct a double

alternate triangular snake D(ATn) from a path Pn with vertices v1, v2, · · · , vn by joining vi and vi+1

(alternately) to a new vertex wi, i = 1, 2, · · · , n− 1 and to a new vertex ui for i = 1, 2, · · · , n− 1.

If S is any open packing set of G then it is obvious that v1 must in S as

dG(v1) = δ(G) =





1, if n is odd,

2, if n is even.

We construct a set S of vertices as follows:

S =






{
v4i+1, v4i+2/0 ≤ i ≤

⌈n
5

⌉}
for n is odd

{
v4i+2, v4i+3/0 ≤ i ≤

⌊n
5

⌋}
for n is odd

Then |S| =
⌈n

2

⌉
. Moreover S is an open packing set of G as N(v)∩N(u) 6= φ for all v, u ∈ S. For any

w ∈ V (G)− S, N(v) ∩N(w) 6= φ and N(u) ∩N(w) 6= φ. Thus, S is a maximal open packing set of G.

Therefore any superset containing the vertices greater than that of |S| can not be an open packing set

of G. Hence

ρo(G) =
⌈n

3

⌉
. 2

Illustration 2.7 The graph AT7 and its open packing number is shown Figure 5 while the graph

D(AT7) and its open packing number is shown in Figure 6.
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Figure 5 ρo(AT7) = 4

Figure 6 ρo(D(AT7)) = 4

§3. Concluding Remarks

The concept of packing number relates three important graph parameters - neighborhood of a vertex,

adjacency between two vertices and domination in graphs. We have investigated packing and open

packing numbers of triangular snakes.
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§1. Introduction

A topological index is a mathematical measure which correlates to the chemical structures of any simple

finite graph. They are invariant under the graph isomorphism. They play an important role in the study

of QSAR/QSPR. In theoretical chemistry, molecular structure descriptors (also called topological

indices) are used for modeling physicochemical, pharmacologic, toxicologic, nanoscience, biological and

other properties of chemical compounds. Wiener index is the first distance-based topological index

that were defined by Wiener [5]. For more details, see [9,10,11,12].

The status [2] of a vertex v ∈ V (G) is defined as the sum of its distance from every other vertex in

V (G) and is denoted by σG(v), that is, σG(v) =
∑

u∈V (G)

dG(u, v), where dG(u, v) is the distance between

u and v in G. The status of vertex v is also called as transmisson of v [2].

The Wiener index W (G) of a connected graph G is defined as the sum of the distances between

all pairs of vertices of G, that is,

W (G) =
1

2

∑

u,v∈V (G)

dG(u, v) =
1

2

∑

u∈V (G)

σG(v).

The first Zagreb index is defined as

M1(G) =
∑

u∈V (G)

(dG(u))2 =
∑

uv∈E(G)

(dG(u) + dG(v))

1Received May 9, 2017, Accepted March 10, 2018.
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and the second Zagreb index is defined as

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

The Zagreb indices are found to have applications in QSPR and QSAR studies as well, see [7]. The

first and second Zagreb coindices were first introduced by Ashrafi et al. [8]. They are defined as follows:

M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v))

and the second Zagreb index is defined as

M2(G) =
∑

uv/∈E(G)

dG(u)dG(v).

Motivated by the invariants like Zagreb indices, Ramane et al.[1] proposed the first status connec-

tivity index S1(G) and first status connectivity coindex S1(G) of a connected graph G as

S1(G) =
∑

uv∈E(G)

(
σG(u) + σG(v)

)
and S1(G) =

∑
uv/∈E(G)

(
σG(u) + σG(v)

)
.

Similarly, the second status connectivity index S2(G) and second status connectivity coindex S2(G)

of a connected graph G as

S2(G) =
∑

uv∈E(G)

σG(u)σG(v) and S2(G) =
∑

uv/∈E(G)

σG(u)σG(v).

The bounds for the status connectivity indices are determined in [1]. Also they are discussed

the linear regression analysis of the distance-based indices with the boiling points of benzenoid hy-

drocarbons and the linear model based on the status index is better than the models corresponding

to the other distance based indices. In this sequence, here we obtain the exact formulae for second

status connectivity indices and its coindices of some composite graphs such as Cartesian product, join,

composition of two connected graphs.

§2. Main Results

In this section, we obtain the second status connectivity indices and its coindices of Cartesian product,

join and composition of two graphs.

Lemma 2.1 Let G be a connected graph on n vertices. Then

S2(G) = 2(W (G)) − 1

2

∑

u∈V (G)

(σG(u))2 − S2(G).
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Proof By the definition of S2, we obtain:

S2(G) =
∑

uv/∈E(G)

σG(u)σG(v)

=
∑

{u,v}⊆V (G)

σG(u)σG(v) −
∑

uv∈E(G)

σG(u)σG(v)

=
1

2

(( ∑

u∈V (G)

σG(u)
)2

−
∑

u∈V (G)

(σG(u))2
)

− S2(G)

= 2(W (G)) − 1

2

∑

u∈V (G)

(σG(u))2 − S2(G). 2
Let Cn and Pn denote the cycle and path on n vertices, respectively. It is known that [1]

S1(Pn) =
1

3
n(n− 1)(2n− 1) and W (Pn) =

n(n2 − 1)

6

and

S1(Cn) =





n3

2
, if n is even,

n(n2−1)
2

, otherwise;
and W (Cn) =





n3

8
, if n is even,

n(n2−1)
8

, otherwise.

We therefore have that

Lemma 2.2 For cycle Cn and path Pn, we get that

(1) For n ≥ 3, S2(Cn) =






n5

16
if n is even

n(n2−1)2

16
if n is odd;

(2) S2(Pn) = n2(n−1)
4

.

2.1 Cartesian Product

The Cartesian product, G2H, of the graphs G and H has the vertex set V (G2H) = V (G) × V (H)

and (u, x)(v, y) is an edge of G2H if u = v and xy ∈ E(H) or, uv ∈ E(G) and x = y. To each

vertex u ∈ V (G), there is an isomorphic copy of H in G2H and to each vertex v ∈ V (H), there is an

isomorphic copy of G in G2H.
Theorem 2.3 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.

Then

S2(G2H) = n3
2S2(G) + n3

1S2(H) + 2n1n2(S1(G)W (H) + S1(H)W (G))

+n2
2m2

∑

ui∈V (G)

(σG(ui))
2 + n2

1m1

∑

vs∈V (H)

(σH(vs))
2.

Proof From the structure of G2H, the distance between two vertices (ui, vr) and (uk, vs) of G2H
is dG(ui, uk) + dH(vr, vs). Moreover, the degree of a vertex (ui, vr) in V (G2H) is dG(ui) + dH(vr). By
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the definition of σ(u) for the graph G2H and a vertex (ui, vr) ∈ V (G2H), we have

σG2H((ui, vr)) =
∑

(uk,vs)∈V (G2H)

dG2H((ui, vr), (uk, vs))

=
∑

uk∈V (G)

∑

vs∈V (H)

(
dG(ui, uk) + dG(vr, vs)

)

= n2σG(ui) + n1σH(vr). (2.1)

Hence by the definitions of S2 and G2H, we have

S2(G2H) =
∑

(ui,vs)(uk,vs)∈E(G2H)

σG2H((ui, vs))σG2H((uk, vs))

+
∑

(ui,vs)(uk,vs)∈E(G2H)

σG2H((ui, vr))σG2H((ui, vs))

= A1 +A2, (2.2)

where

A1 =
∑

(ui,vs)(uk,vs)∈E(G2H)

σG2H((ui, vs))σG2H((uk, vs))

=
∑

uiuk∈E(G)

∑

vs∈V (H)

(
n2σG(ui) + n1σH(vs)

)(
n2σG(uk) + n1σH(vs)

)
, by (2.1)

=
∑

uiuk∈E(G)

∑

vs∈V (H)

(
n2

2σG(ui)σG(uk) + n1n2σG(ui)σH(vs)

+n1n2σH(vs)σG(uk) + n2
1(σH(vs))

2
)

= n3
2

∑

uiuk∈E(G)

σG(ui)σG(uk) + n1n2

∑

vs∈V (H)

σH(vs)
∑

uiuk∈E(G)

(σG(ui) + σG(uk))

+n2
1m1

∑

vs∈V (H)

(σH(vs))
2

= n3
2S2(G) + 2n1n2S1(G)W (H) + n2

1m1

∑

vs∈V (H)

(σH(vs))
2.

and a similar argument of A1, we obtain

A2 =
∑

(ui,vs)(uk,vs)∈E(G2H)

σG2H((ui, vr))σG2H((ui, vs))

= n3
1S2(H) + 2n1n2S1(H)W (G) + n2

2m2

∑

ui∈V (G)

(σG(ui))
2.

From (2.2) and A1, A2, we obtain:

S2(G2H) = n3
2S2(G) + n3

1S2(H) + 2n1n2(S1(G)W (H) + S1(H)W (G))

+n2
2m2

∑

ui∈V (G)

(σG(ui))
2 + n2

1m1

∑

vs∈V (H)

(σH(vs))
2. 2
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Remark 2.4 For each vertex (ui, vr) in G2H,
∑

(ui,vr)∈V (G2H)

(
σG2H((ui, vr))

)2

=
∑

ui∈V (G)

∑

vr∈V (H)

(
n2σG(ui) + n1σH(vr)

)2

, by (2.1)

=
∑

ui∈V (G)

∑

vr∈V (H)

(
n2

2(σG(ui))
2 + n2

1(σH(vr))
2 + 2n1n2σG(ui)σH(vr)

)

= n3
2

∑

ui∈V (G)

(σG(ui))
2 + n3

1

∑

vr∈V (H)

(σH(vr))
2 + 8n1n2W (G)W (H).

By Theorem 2.3, Lemma 2.1, Remark 2.4 and this fact that [3], W (G2H) = n2
2W (G)+n2

1W (H),

the following theorem is straightforward.

Theorem 2.5 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.

Then

S2(G2H) = 2[n2
2W (G) + n2

1W (H)]2 − n3
2S2(G) − n3

1S2(H)

−2n1n2[S1(G)W (H) + S1(H)W (G) + 2W (G)W (H)]

−n
2
2(n2 + 2m2)

2

∑

ui∈V (G)

(σG(ui))
2 − n2

1(n1 + 2m1)

2

∑

vr∈V (H)

(σH(vr))
2.

2.2 Join

The join G+H of two graphs G and H is the union G ∪H together with all the edges joining V (G)

and V (H). From the structure of G+H, the distance between two vertices u and v of G+H is

dG+H(u, v) =





0, if u = v,

1, if uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) and v ∈ V (H)),

2, otherwise.

Moreover, the degree of a vertex v in V (G+H) is

dG+H(v) =




dG(v) + |V (H)| , if v ∈ V (G),

dH(v) + |V (G)| , if v ∈ V (H).

Theorem 2.6 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.

Then

S2(G+H) = M2(G) +M2(H) − (2n1 + n2 − 2)M1(G)

−(2n2 + n1 − 2)M1(H)

+(2n1 + n2 − 2)[(2n1 + n2 − 2)m1 − 2n1m2]

−(2n2 + n1 − 2)[(2n2 + n1 − 2)m2 − 2n2m1

+n1n2(2n1 + n2 − 2)] + 4m1m2.
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Proof Let u be a vertex in V (G). Then from the structure of G+H, we obtain:

σG+H(u) =
∑

v∈V (G+H)

dG+H((u, v))

=
∑

v∈V (G) u 6=v,uv/∈E(G)

2 +
∑

v∈V (G), u 6=v,uv∈E(G)

1 +
∑

v∈V (H)

1

= 2n1 + n2 − 2 − dG(u).

Similarly, if v is a vertex of H, then σG+H(v) = 2n2 + n1 − 2 − dG(v).

The edge set of G+H can be partitioned into three subsets, namely,

E1 = {uv ∈ E(G+H)|uv ∈ E(G)},

E2 = {uv ∈ E(G+H)|uv ∈ E(H)} and

E3 = {uv ∈ E(G+H)|u ∈ V (G), v ∈ V (H)}.

The contribution of the edges in E1 is given by

S2(G+H) =
∑

uv∈E1

σG+H(u)σG+H(v)

=
∑

uv∈E(G)

(
2n1 + n2 − 2 − dG(u)

)(
2n1 + n2 − 2 − dG(v)

)

=
∑

uv∈E(G)

[
(2n1 + n2 − 2)2 − (2n1 + n2 − 2)dG(v)

−(2n1 + n2 − 2)dG(u) + dG(u)dG(v)]

= (2n1 + n2 − 2)2m1 − (2n1 + n2 − 2)M1(G) +M2(G). (2.3)

Similarly, the contribution of the edges in E2 is given by

S2(G+H) =
∑

uv∈E2

σG+H(u)σG+H(v)

= (2n2 + n1 − 2)2m2 − (2n2 + n1 − 2)M1(H) +M2(H). (2.4)

The contribution of the edges in E3 is given by

S2(G+H) =
∑

uv∈E3

σG+H(u)σG+H(v)

=
∑

u∈V (G)

∑

v∈V (H)

(
2n1 + n2 − 2 − dG(u)

)(
2n2 + n1 − 2 − dH(v)

)

=
∑

u∈V (G)

∑

v∈V (H)

[
(2n1 + n2 − 2)(2n2 + n1 − 2) − (2n1 + n2 − 2)dH(v)

−(2n2 + n1 − 2)dG(u) + dG(u)dH(v)
]

= (2n1 + n2 − 2)(2n2 + n1 − 2)n1n2 − 2n1m2(2n1 + n2 − 2)

−2n2m1(2n2 + n1 − 2) + 4m1m2. (2.5)
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The total contribution of the edges in G+H and its S2(G+H) is given by

S2(G+H) = M2(G) +M2(H) − (2n1 + n2 − 2)M1(G)

−(2n2 + n1 − 2)M1(H)

+(2n1 + n2 − 2)[(2n1 + n2 − 2)m1 − 2n1m2]

−(2n2 + n1 − 2)[(2n2 + n1 − 2)m2

−2n2m1 + n1n2(2n1 + n2 − 2)] + 4m1m2. 2
Remark 2.7 For each vertex v in G+H,

∑

v∈V (G+H)

(σG+H(v))2 =
∑

v∈V (G)

(σG+H(v))2 +
∑

v∈V (H)

(σG+H(v))2

=
∑

v∈V (G)

(2n1 + n2 − 2 − dG(u))2 +
∑

v∈V (H)

(2n2 + n1 − 2 − dG(v))2

=
∑

v∈V (G)

(
(2n1 + n2 − 2)2 + (dG(v))2 − 2(2n1 + n2 − 2)dG(v)

)

+
∑

v∈V (H)

(
(2n2 + n1 − 2)2 + (dH(v))2 − 2(2n2 + n1 − 2)dH(v)

)

= (2n1 + n2 − 2)2n1 +M1(G) − 4m1(2n1 + n2 − 2)

+(2n2 + n1 − 2)2n2 +M1(H) − 4m2(2n2 + n1 − 2).

According to [3], we know that

W (G+H) = |V (G)| (|V (G)| − 1) + |V (H)| (|V (H)| − 1)

+ |V (G)| |V (H)| − |E(G)| − |E(H)| .

By this formula, Theorem 2.6, Lemma 2.1 and Remark 2.7, we obtain the following theorem.

Theorem 2.8 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.

Then

S2(G+H) =
M1(G)

2

(
4n1 + 2n2 − 5

)
+
M1(H)

2

(
4n2 + 2n1 − 5

)

−M2(G) −M2(H) + 2
(
n1(n1 − 1) + n2(n2 − 1) + n1n2 −m1 −m2

)

−(2n1 + n2 − 2)
(
(2n1 + n2 − 2)(

n1

2
+m1) − 2(m1 + n1m2)

)

−(2n2 + n1 − 2)
(
(2n2 + n1 − 2)(

n2

2
−m2) − 2(m2 − n2m1)

−n1n2(2n1 + n2 − 2)
)
− 4m1m2.

2.3 Composition

The composition of two graphs G and H is denoted by G[H ]. The vertex set of G[H ] is V (G) × V (H)

and any two vertices (ui, vr) and (uk, vs) are adjacent if and only if uiuk ∈ E(G) or ui = uk and

vrvs ∈ E(H).

Theorem 2.9 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.
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Then

S2(G[H ]) = n4
2S2(G) + 2n2

2(n2(n2 − 1) −m2)S1(G) + 8n2m2(n2 − 1)W (G)

−2n2W (G)M1(H) − 2n1(n2 − 1)M1(H) + n1M2(H)

+n2
2m2

∑

ui∈V (G)

(σG(ui))
2 + 4(n2 − 1)2(n1m2 +m1n

2
2)

+4m1m2(m2 − 2n2(n2 − 1)).

Proof For the composition of two graphs, the degree of a vertex (u, v) of G[H ] is given by

dG[H]((u, v)) = n2dG(u) + dH(v). Moreover, the distance between two vertices (ui, vr) and (uk, vs) of

G[H ] is

dG[H]((ui, vr), (uk, vs)) =





dG(ui, uk) ui 6= uk

2 ui = uk, vrvs /∈ E(H)

1 ui = uk, vrvs ∈ E(H).

Let (ui, vr) be a vertex of G[H ]. Then

σG[H]((ui, vr)) =
∑

(uk,vs)∈V (G[H])

dG[H]((ui, vr), (uk, vs))

=
∑

(uk,vs)∈V (G[H]), ui 6=uk

dG(ui, uk) +
∑

(ui,vs)∈V (G[H])

dG[H]((ui, vr), (ui, vs))

= n2σG(ui) + dH(vr) + 2(n2 − 1 − dH(vr))

= n2σG(ui) + 2(n2 − 1) − dH(vr). (2.6)

From the structure of G[H ] and definition of S2, we have

S2(G[H ]) =
∑

ui∈V (G)

∑

vrvs∈E(H)

σG[H]((ui, vr))σG[H]((ui, vs))

+
∑

uiuk∈E(G)

∑

vr∈V (H)

∑

vs∈V (H)

σG[H]((ui, vr))σG[H]((ui, vs))

= A1 + A2, (2.7)

where,

A1 =
∑

ui∈V (G)

∑

vrvs∈E(H)

σG[H]((ui, vr))σG[H]((ui, vs))

=
∑

ui∈V (G)

∑

vrvs∈E(H)

(
n2σG(ui) + 2(n2 − 1) − dH(vr)

)(
n2σG(ui) + 2(n2 − 1) − dH(vs)

)

=
∑

ui∈V (G)

∑

vrvs∈E(H)

[
n2

2(σG(ui))
2 + 2(n2 − 1)n2σG(ui) − n2σG(ui)dH(vs) + 2(n2 − 1)n2σG(ui)

+4(n2 − 1)2 − 2(n2 − 1)dH(vs) − n2σG(ui)dH(vr) − 2(n2 − 1)dH(vr) + dH(vr)dH(vs)
]

=
∑

ui∈V (G)

∑

vrvs∈E(H)

[
n2

2(σG(ui))
2 + 4n2(n2 − 1)σG(ui) + 4(n2 − 1) − n2σG(ui)(dH(vr) + dH(vs))

−2(n2 − 1)(dH(vr) + dH(vs)) + dH(vr)dH(vs)
]

= n2
2m2

∑

ui∈V (G)

(σG(ui))
2 + 8n2(n2 − 1)m2W (G) + n1M2(H)
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−2n2W (G)M1(H) − 2(n2 − 1)n1M1(H).

A2 =
∑

uiuk∈V (G)

∑

vr∈V (H)

∑

vs∈V (H)

σG[H]((ui, vr))σG[H]((uk, vs))

=
∑

uiuk∈V (G)

∑

vr∈V (H)

∑

vs∈V (H)

(
n2σG(ui) + 2(n2 − 1) − dH(vr)

)(
n2σG(uk) + 2(n2 − 1) − dH(vs)

)

=
∑

uiuk∈V (G)

∑

vr∈V (H)

∑

vs∈V (H)

[
n2

2σG(ui)σG(uk) + 2(n2 − 1)n2(σG(ui) + σG(uk)) + 4(n2 − 1)2

−n2σG(ui)dH(vs) − n2dH(vr)σG(uk) − 2(n2 − 1)(dH(vr) + dH(vr)) + dH(vr)dH(vs)
]

= n4
2S2(G) + 2n2

2(n2(n2 − 1) −m2)S1(G) − 8n2m1m2(n2 − 1) + 4m1m
2
2 + 4(n2 − 1)2m1n

2
2.

Hence

S2(G[H ]) = n4
2S2(G) + 2n2

2(n2(n2 − 1) −m2)S1(G) + 8n2m2(n2 − 1)W (G)

−2n2W (G)M1(H) − 2n1(n2 − 1)M1(H) + n1M2(H)

+n2
2m2

∑

ui∈V (G)

(σG(ui))
2 + 4(n2 − 1)2(n1m2 +m1n

2
2)

+4m1m2(m2 − 2n2(n2 − 1)). 2
Remark 2.10 Let (ui, vr) be a vertex of G[H ]. Then

∑

(ui,vr)∈V (G[H])

(σG[H]((ui, vr)))
2 =

∑

ui∈V (G)

∑

vr∈V (H)

(n2σG(ui) + 2(n2 − 1) − dH(vr))
2

=
∑

ui∈V (G)

∑

vr∈V (H)

(
n2

2(σG(ui))
2 + 4(n2 − 1)2 + (dH(vr))

2

+4n2(n2 − 1)σG(ui) − 2n2σG(ui)dH(vr) − 2(n2 − 1)dH(vr)
)

= n3
2

∑

ui∈V (G)

(σG(ui))
2 + n1M1(H)

+4n2(n2(n2 − 1) −m2)
∑

ui∈V (G)

σG(ui)

+4(n2 − 1)(n1n2(n2 − 1) −m2).

Recall from [3] that

W (G[H ]) = |V (H)|2 (W (G) + |V (G)|) − |V (G)| (|V (H)| + |E(H)|).

In the next theorem, we obtain a formula for S1(G[H ]) according to W (G[H ]), S2(G[H ]) and

Remark 2.10.

Theorem 2.11 Let G and H be two connected graphs with n1, n2 vertices and m1,m2 edges, respectively.

Then

S2(G[H ]) =
(
2n2W (G) + 2n1(n2 − 1) − n1

2

)
M1(H) − n1M2(H) − n2

2S2(G)

−2n2
2(n2(n2 − 1) −m2)S1(G) −

(
8n2m2(n1 − 1) + 2n2

2

)
W (G)
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−n
2
2

2
(n2 − 2m2)

∑

ui∈V (G)

(σG(ui))
2 − 2n2(n2(n2 − 1) −m2)

∑

ui∈V (G)

σG(ui)

+n1n2(2n2 − 1) − n1m2 − 2(n2 − 1)2(n1n2 + 2n1m2 + 2m1n
2
2)

+2m2(n2 − 1)(4m1n2 + 1) − 4m1m
2
2.
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of Harary

[2]. The non-standard will be given in this paper as and when required.

Let G = (V,E) be a connected graph.For any two vertices u, v ∈ V (G), the detour distance D(u, v)

is the length of the longest u − v path in G. The eccentricity e(u) of a vertex u is the distance to a

vertex farthest from u. The radius r(G) of G is defined by

r(G) = min{e(u) : u ∈ G}.

For any vertex u in G, the detour eccentricity De(u) of u is the detour distance to a vertex

farthest from u. The detour radius Dr(G) of G is defined by Dr(G) = min{De(u) : u ∈ G}. The

diameter d(G) of G is defined by d(G) = max{e(u) : u ∈ G} and the detour diameter Dd(G) of G is

max{De(u) : u ∈ G}.
The detour radial graph DR(G) of G = (V, E) is a graph with V (DR(G)) = V (G) and any two

vertices u and v in DR(G) are joined by an edge if and only if D(u, v) = Dr(G). This concept were

introduced by Ganeshwari and Pethanachi Selvam [1].

To model individuals’ preferences towards each other in a group, Harary [3] introduced the concept

of signed graphs in 1953. A signed graph S = (G,σ) is a graph G = (V,E) whose edges are labeled with

positive and negative signs (i.e., σ : E(G) → {+,−}). The vertexes of a graph represent people and an

edge connecting two nodes signifies a relationship between individuals. The signed graph captures the

attitudes between people, where a positive (negative edge) represents liking (disliking). An unsigned

graph is a signed graph with the signs removed. Similar to an unsigned graph, there are many active

1Received August 27, 2018, Accepted June 6, 2019.
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areas of research for signed graphs. For more new notions on signed graphs refer the papers.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the signs

of its edges; in other words, a cycle is positive if it contains an even number of negative edges and

negative if it contains an odd number of negative edges. A signed graph S is said to be balanced if

every cycle in it is positive. A signed graph S is called totally unbalanced if every cycle in S is negative.

A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function ζ : V (G) → {+,−}. Given a signed graph S one can easily define a

marking ζ of S as follows:

For any vertex v ∈ V (S),

ζ(v) =
∏

uv∈E(S)

σ(uv),

the marking ζ of S is called canonical marking of S.

The following are the fundamental results about balance, the second being a more advanced form

of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent conditions

is satisfied:

(i) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge joins vertices in V1

or in V2, and every negative edge joins a vertex in V1 and a vertex in V2; (Harary [3])

(ii) There exists a marking µ of its vertices such that each edge uv in Γ satisfies σ(uv) = ζ(u)ζ(v).

(Sampathkumar [4])

Switching S with respect to a marking ζ is the operation of changing the sign of every edge of

S to its opposite whenever its end vertices are of opposite signs. The resulting signed graph Sζ(S) is

said switched signed graph. A signed graph S is called to switch to another signed graph S′ written

S ∼ S′, whenever their exists a marking ζ such that Sζ(S) ∼= S′, where ∼= denotes the usual equivalence

relation of isomorphism in the class of signed graphs. Hence, if S ∼ S′, we shall say that S and S′ are

switching equivalent. Two signed graphs S1 and S2 are signed isomorphic (written S1
∼= S2) if there is

a one-to-one correspondence between their vertex sets which preserve adjacency as well as sign.

Two signed graphs S1 = (G1, σ1) and S2 = (G2, σ2) are said to be weakly isomorphic (see [21])

or cycle isomorphic (see [22]) if there exists an isomorphism φ : G1 → G2 such that the sign of every

cycle Z in S1 equals to the sign of φ(Z) in S2. More results on signed graphs can be found in references

[4-22]. For example, the following result is well known.

Theorem 1.2 (T. Zaslavsky, [22]) Given a graph G, any two signed graphs in ψ(G), where ψ(G)

denotes the set of all the signed graphs possible for a graph G, are switching equivalent if and only if

they are cycle isomorphic.

§2. Detour Radial Signed Graphs

Motivated by the existing definition of complement of a signed graph, we now extend the notion of

detour radial graphs to signed graphs as follows: The detour radial signed graph DR(S) of a signed

graph S = (G,σ) is a signed graph whose underlying graph is DR(G) and sign of any edge uv is DR(S)

is ζ(u)ζ(v), where ζ is the canonical marking of S. Further, a signed graph S = (G,σ) is called detour

radial signed graph, if S ∼= DR(S′) for some signed graph S′. The following result restricts the class

of detour radial graphs.
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Theorem 2.1 For any signed graph S = (G,σ), its detour radial signed graph DR(S) is balanced.

Proof Since sign of any edge e = uv in DR(S) is ζ(u)ζ(v), where ζ is the canonical marking of S,

by Theorem 1.1, DR(S) is balanced. 2
For any positive integer k, the kth iterated detour radial signed graph, DKk(S) of S is defined as

follows:

DR0(S) = S, DRk(S) = DR(DRk−1(S)).

Corollary 2.2 For any signed graph S = (G,σ) and for any positive integer k, DRk(S) is balanced.

The following result characterize signed graphs which are detour radial signed graphs.

Theorem 2.3 A signed graph S = (G,σ) is a detour radial signed graph if, and only if, S is balanced

signed graph and its underlying graph G is a detour radial graph.

Proof Suppose that S is balanced and G is a detour radial graph. Then there exists a graph G′

such that DR(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a marking ζ of G such that

each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph S′ = (G′, σ′), where for

any edge e in G′, σ′(e) is the marking of the corresponding vertex in G. Then clearly, DR(S′) ∼= S.

Hence S is a detour radial signed graph.

Conversely, suppose that S = (G, σ) is a detour radial signed graph. Then there exists a signed

graph S′ = (G′, σ′) such that DR(S′) ∼= S. Hence, G is the detour radial graph of G′ and by Theorem

2.1, S is balanced. 2
In [1], the authors characterizes the graphs G = (V,E) such that G ∼= DR(G).

Theorem 2.4 Let G = (V,E) be a graph with atleast one cycle which covers all the vertices of G.

Then G and the detour radial graph DR(G) are isomorphic if and only if G is isomorphic to either Kn

or Cn or Km,n with m = n.

In view of the above result, we now characterize the signed graphs such that the detour radial

signed graph and its corresponding signed graph are switching equivalent.

Theorem 2.5 For any signed graph S = (G,σ) and its underlying graph G contains atleast one cycle

which covers all the vertices. Then S and the detour radial signed graph DR(S) are cycle isomorphic

if and only if the underlying of S satisfies the conditions of Theorem 2.4 and S is balanced.

Proof Suppose RD(S) ∼ S. This implies, DR(G) ∼= G and hence by Theorem 2.4, we see that

the graph G satisfies the conditions in Theorem 2.4. Now, if S is any signed graph with underlying

graph contains at least one Hamilton cycle and satisfies the conditions of Theorem 2.4. Then DR(S)

is balanced and hence if S is unbalanced and its detour radial signed graph DR(S) being balanced can

not be switching equivalent to S in accordance with Theorem 1.2. Therefore, S must be balanced.

Conversely, suppose that S balanced signed graph with the underlying graph G satisfies the

conditions of Theorem 2.4. Then, since DR(S) is balanced as per Theorem 2.1 and since DR(G) ∼= G

by Theorem 2.4, the result follows from Theorem 1.2 again. 2
In [5], P.S.K.Reddy introduced the notion radial signed graph of a signed graph and proved some

results.
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Theorem 2.6 For any signed graph S = (G,σ), its radial signed graph R(S) is balanced.

In [1], the authors remarked that DR(G) and R(G) are isomorphic, if G is any cycle of odd length.

We now characterize the signed graphs S such that DR(S) ∼ R(S).

Theorem 2.7 For any signed graph S = (G,σ), DR(S) ∼ R(S) if, and only if, G ∼= Cn, where n is

odd.

Proof Suppose that DR(S) ∼ R(S). Then clearly, DR(G) ∼ R(G). Hence, G is any cycle of odd

length.

Conversely, suppose that S is a signed graph whose underlying graph G is Cn, where n is odd.

Then, DR(G) ∼= R(G). Since for any signed graph S, both DR(S) and R(S) are balanced, the result

follows by Theorem 1.2. 2
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Abstract: Let G be a (p, q) graph. Let f be a function from V (G) to the set {1, 2, · · · , k}
where k is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where r is

the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as

f(u) ≥ f(v) or f(v) ≥ f(u). The function f is called a k-remainder cordial labeling of

G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, · · · , k} where vf (x) denote the number of vertices labeled

with x and |ηe(0) − ηo(1)| ≤ 1 where ηe(0) and ηo(1) respectively denote the number of

edges labeled with even integers and number of edges labeled with odd integers. A graph

with admits a k-remainder cordial labeling is called a k-remainder cordial graph. In this

paper we investigate the 3-remainder cordial labeling behavior of dumbbell graph, butterfly

graph, umbrella graph, C3 ⊙K1,n.

Key Words: Dumbbell graph, butterfly graph, umbrella graph, C3 ⊙K1,n, Smarandache

k-remainder cordial labeling.

AMS(2010): 05C78.

§1. Introduction

All graphs considered here are finite and simple. The origin of graph labeling is graceful labeling which

was introduced by Rosa (1967). The concept of cordial labeling was introduced by Cahit [1]. Motivated

by this Ponraj et al. [4, 6], introduced remainder cordial labeling of graphs and investigate the remainder

cordial labeling behavior of several graphs. Also the notion of k-remainder cordial labeling introduced in

[5] and investigate the k−remainder cordial labeling behavior of grid, subdivision of crown, subdivision

of bistar, book, Jelly fish, subdivision of Jelly fish, mongolian tent, flower graph, sunflower graph and

subdivision of ladder graph, Ln ⊙ K1, Ln ⊙ 2K1, Ln ⊙ K2. Recently [9, 10] they investigate the 3-

remainder cordial labeling behavior of the subdivision of the star, wheel, subdivision of the path, cycle,

star, complete graph, comb, crown, wheel, subdivision of the comb, armed crown, fan, square of the

path, K1,n ⊙K2. In this paper we investigate the 3-remainder cordial labeling behavior of dumbbell

graph, butterfly graph, umbrella graph, C3⊙K1,n, etc. Terms are not defined here follows from Harary

[3] and Gallian [2].

1Received August 28, 2018, Accepted June 8, 2019.
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§2. Preliminary Results

Definition 2.1 The corona of G1 with G2, G1 ⊙ G2 is the graph obtained by taking one copy of G1

and p1 copies of G2 and joining the ith vertex of G1 with an edge to every vertex in the ith copy of G2.

Definition 2.2 The graph obtained by joining two disjoint cycles, u1u2 · · · unu1 and v1v2 . . . vnv1 with

an edge u1v1 is called dumbbell graph Dbn.

Definition 2.3 The butterfly graph BFm,n is a two even cycles of the same order say Cn, sharing a

common vertex with m pendant edges attached at the common vertex is called a butterfly graph.

Definition 2.4 The umbrella graph Un,m is obtained from a fan Fn = Pn+K1 where Pn : u1, u2, · · · , un
and V (K1) = {u} by pasting the end vertex of the path Pm : v1, v2, · · · , vm to the vertex of K1 of the

fan Fn.

§3. k-Remainder Cordial Labeling

Definition 3.1 Let G be a (p, q) graph. Let f be a function from V (G) to the set {1, 2, · · · , k} where k

is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where r is the remainder when f(u)

is divided by f(v) (or) f(v) is divided by f(u) according as f(u) ≥ f(v) or f(v) ≥ f(u). The function

f is called a k-remainder cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, · · · , k}, otherwise,

Smarandachely if |vf (i) − vf (j)| ≥ 1 or |ef (0) − ef (1)| ≥ 1 for integers i, j ∈ {1, · · · , k}, where vf (x)

denote the number of vertices labeled with x and |ηe(0) − ηo(1)| ≤ 1 where ηe(0) and ηo(1) respectively

denote the number of edges labeled with even integers and number of edges labeled with odd integers. A

graph with a k-remainder cordial labeling is called a k-remainder cordial graph.

Now, we investigate the 3−remainder cordial labeling behavior of the dumbbell graph Dbn.

Theorem 3.2 The dumbbell graph Dbn is 3-remainder cordial for all n.

Proof Let Cn : u1u2 · · ·unu1 and C
′

n : v1v2 · · · vnv1 be two disjoint cycles of the same order n.

Let V (Dbn) = V (Cn)∪V (C
′

n) and E(Dbn) = E(Cn)∪E(C
′

n)∪{u1v1}. Then the order and size of the

dumbbell graph are 2n and 2n+ 1 respectively.

Case 1. n ≡ 0 (mod 3).

Assign the labels 2, 3 and 1 respectively to the vertices u1, u2 and u3. Next assign the labels

1, 2 and 3 to the vertices u4, u5 and u6 respectively. Then assign the labels 2, 3 and 1 respectively

to the vertices u7, u8 and u9. Then next assign the labels 1, 2 and 3 to the vertices u10, u11 and u12

respectively. Proceeding like this until we reach the vertex un. If n is odd then assign the labels 2, 3

and 1 respectively to the vertices un−2, un−1 and un. If n is even then assign the labels 1, 2 and 3

respectively to the vertices un−2, un−1 and un of Cn. On the other hand assign the labels 3, 2 and 1

respectively to the vertices v1, v2 and v3. Next assign the labels 1, 3 and 2 to the vertices v4, v5 and

v6 respectively. Then assign the labels 3, 2 and 1 respectively to the vertices v7, v8 and v9. Then next

assign the labels 1, 3 and 2 to the vertices v10, v11 and v12 respectively. Continuing like this until we

reach the vertex vn. If n is odd then assign the labels 3, 2 and 1 respectively to the vertices vn−2, vn−1

and vn. If n is even then assign the labels 1, 3 and 2 respectively to the vertices vn−2, vn−1 and vn

of C
′

n. Table 1 shows that this vertex labeling is called 3-remainder cordial labeling of the dumbbell
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graph for n ≡ 0 (mod 3).

Nature of n vf (1) vf (2) vf (3) ηe ηo

n is odd 2n
3

2n
3

2n
3

n+ 1 n

n is even 2n
3

2n
3

2n
3

n n+ 1

Table 1

Case 2. n ≡ 1 (mod 3).

Subcase 2.1 n is even.

Assign the labels to the vertices ui, 1 ≤ i ≤ n in the following way.

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n− 1,

3, if i = 2, 4, 6, · · · , i+ 2 · · · , n.

we consider the vertices vi, 1 ≤ i ≤ n of the cycle C
′

n. Assign the label 1 to the first 2n+1
3

vertices

v1, v2, · · · , v 2n+1
3

. Next assign the label 2 to the vertices v 2n+1
3

+1
, v 2n+1

3
+2
, · · · , u 5n+4

6
. Finally assign

the label 3 to the remaining vertices of the cycle C
′

n.

Subcase 2.2 n is odd.

Assign the labels to the vertices ui, 1 ≤ i ≤ n in the following ways.

f(ui) =





3, if i = 1, 3, 5, · · · , i+ 2 · · · , n,
2, if i = 2, 4, 6, · · · , i+ 2 · · · , n− 1.

Next assign the labels to the vertices vi, 1 ≤ i ≤ n of the cycle C
′

n in the following way. As-

sign the label 1 to the first 2n+1
3

vertices v1, v2, . . . , v 2n+1
3

. Next assign the label 2 to the vertices

v 2n+1
3

+1
, v 2n+1

3
+2
, . . . , u 5n+1

6
. Finally assign the label 3 to the remaining vertices of the cycle C

′

n. Ta-

ble 2 shows that this vertex labeling is called 3-remainder cordial labeling of the dumbbell graph for

n ≡ 1 (mod 3).

Nature of n,n ≡ 1 (mod 3) vf (1) vf (2) vf (3) ηe ηo

n is odd 2n+1
3

2n+1
3

2n−2
3

n+ 1 n

n is even 2n+1
3

2n+1
3

2n−2
3

n n+ 1

Table 2

Case 3. n ≡ 2 (mod 3).

Fix the labels in the following pattern : 3, 2, 1, 1 and 2 to the vertices u1, u2, u3, un−1 and un

respectively and 2, 3, 2, 1 and 3 to the vertices v1, v2, v3, vn−1 and vn respectively. Next assign the

labels to the remaining vertices ui, and vi, (4 ≤ i ≤ n− 2) in the following two cases.

Subcase 3.1 First assign the labels to the vertices ui, 4 ≤ i ≤ n− 2. Assign the labels 1, 2 and 3

to the vertices u4, u5 and u6 respectively. Then assign the labels 2, 3 and 1 respectively to the vertices

u7, u8 and u9. Then next assign the labels 1, 2 and 3 to the vertices u10, u11 and u12 respectively. Then

assign the labels 2, 3 and 1 respectively to the vertices u13, u14 and u15. Proceeding like this until we
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reach the vertex un−2. When n is odd then the vertices un−4, un−3 and un−2 are receive the labels 2, 3

and 1 respectively. When n is even then the vertices un−4, un−3 and un−2 are receive the labels 1, 2

and 3 respectively.

Subcase 3.2 We consider the vertices vi, (4 ≤ i ≤ n− 2). Assign the labels to the vertices vi for

(4 ≤ i ≤ n − 2) as in subcase(i). Table 3 shows that this vertex labeling is called 3-remainder cordial

labeling of the dumbbell graph for n ≡ 2 (mod 3).

Nature of n,n ≡ 2 (mod 3) vf (1) vf (2) vf (3) ηe ηo

n is odd 2n−1
3

2n+2
3

2n−1
3

n+ 1 n

n is even 2n−1
3

2n+2
3

2n−1
3

n n+ 1

Table 3

This completes the proof. 2
Theorem 3.3 The umbrella Un,n is 3-remainder cordial for all n.

Proof Let Fn = Pn +K1 where Pn : u1, u2, · · · , un and V (K1) = {u}. Let P
′

n : v1, v2, · · · , vn be

another path. Identify v1 with u. Clearly the umbrella graph has 2n vertices and 3n− 2 edges.

Case 1. n ≡ 0 (mod 3).

Subcase 1.1 n is odd.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, . . . , i+ 2 · · · , n,
3, if i = 2, 4, 6, . . . , i+ 2 · · · , n− 1.

Next assign the labels to the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n+3
6

vertices

v1, v2, · · · , vn+3
6

and assign the label 1 consecutively to the vertices vn+3
6

+1
, vn+3

6
+2
, · · · , v 5n+3

6
. Next

assign the label 2 to the remaining vertices.

Subcase 2. n is even.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 . . . , n− 1,

3, if i = 2, 4, 6, · · · , i+ 2 . . . , n.

Next we consider the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n
6

vertices v1, v2, · · · , vn
6

and assign the label 1 consecutively to the vertices vn
6

+1, vn
6

+2, · · · , v 5n
6

. Next assign the label 2 to the

remaining vertices v 5n
6

+1, v 5n
6

+2, . . . , vn. Table 4 shows that this vertex labeling is called 3-remainder

cordial labeling of Un,n for n ≡ 0 (mod 3).

Nature of n,n ≡ 0 (mod 3) vf (1) vf (2) vf (3) ηe ηo

n is odd 2n
3

2n
3

2n
3

3n−3
2

3n−1
2

n is even 2n
3

2n
3

2n
3

3n−2
2

3n−2
2

Table 4
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Case 2. n ≡ 1 (mod 3).

Subcase 2.2 n is odd.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n,
3, if i = 2, 4, 6, · · · , i+ 2 · · · , n− 1.

Next assign the labels to the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n+5
6

vertices

v1, v2, · · · , vn+5
6

and assign the label 1 consecutively to the vertices vn+5
6

+1
, vn+5

6
+2
, · · · , v 5n+7

6
. Next

assign the label 2 to the remaining vertices.

Subcase 2.2 n is even.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n− 1,

3, if i = 2, 4, 6, · · · , i+ 2 · · · , n.

Next we consider the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n+2
6

vertices

v1, v2, · · · , vn+2
6

and assign the label 1 to the vertices vn+2
6

+1
, vn+2

6
+2
, · · · , v 5n+4

6
consecutively. Next

assign the label 2 to the remaining vertices v 5n+4
6

+1
, v 5n+4

6
+2
, · · · , vn. Table 5 shows that this vertex

labeling is called 3-remainder cordial labeling of Un,n for n ≡ 1 (mod 3).

Nature of n,n ≡ 0 (mod 3) vf (1) vf (2) vf (3) ηe ηo

n is odd 2n+1
3

2n−2
3

2n+1
3

3n−3
2

3n−1
2

n is even 2n+1
3

2n−2
3

2n+1
3

3n−2
2

3n−2
2

Table 5

Case 3. n ≡ 2 (mod 3).

Subcase 3.1 n is odd.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n,
3, if i = 2, 4, 6, · · · , i+ 2 · · · , n− 1.

Next assign the labels to the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n+1
6

vertices

v1, v2, · · · , vn+1
6

and assign the label 1 to the vertices vn+1
6

+1
, vn+1

6
+2
, · · · ,

v 5n+5
6

consecutively. Next assign the label 2 to the remaining (n−5
6

) vertices.

Subcase 3.2 n is even.

Assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n− 1,

3, if i = 2, 4, 6, · · · , i+ 2 · · · , n.

Next we consider the vertices vi, 1 ≤ i ≤ n. Assign the label 3 to the first n−2
6

vertices
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v1, v2, · · · , vn−2
6

and assign the label 1 to the vertices vn−2
6

+1
, vn−2

6
+2
, · · · , v 5n+2

6
consecutively. Next

assign the label 2 to the remaining n−2
6

vertices v 5n+2
6

+1
, v 5n+2

6
+2
, · · · , vn. Table 6 shows that this

vertex labeling is called 3-remainder cordial labeling of Un,n for all n ≡ 2 (mod 3).

Nature of n,n ≡ 2 (mod 3) vf (1) vf (2) vf (3) ηe ηo

n is odd 2n+2
3

2n−1
3

2n−1
3

3n−3
2

3n−1
2

n is even 2n+2
3

2n−1
3

2n−1
3

3n−2
2

3n−2
2

Table 6

This completes the proof. 2
Theorem 3.4 The butterfly graph BFn,n is 3-remainder cordial for all n.

Proof Let Cn : u1u2 · · ·unu1 and C
′

n : v1v2 · · · vnv1 be two cycles of the same order n. Identify

the vertex u1 with the vertex v1. Let w1, w2 · · · , wn be the n-pendant vertices adjacent to the vertex

u1. Then the given graph has 3n− 1 vertices and 3n edges.

First assign the labels to the vertices ui, (1 ≤ i ≤ n) as follows:

f(ui) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n− 1,

3, if i = 2, 4, 6, · · · , i+ 2 · · · , n.

Next assign the labels to the vertices vi, (2 ≤ i ≤ n). Assign the label 1 to the vertices v2, v3, . . . , vn.

Finally assign the labels to the vertices wi, (1 ≤ i ≤ n) as follows:

f(wi) =





2, if i = 1, 3, 5, · · · , i+ 2 · · · , n

2
,

3, if i = n
2

+ 1, n
2

+ 2, · · · , i+ 2 · · · , n.

Thus vf (1) = n − 1, vf (2) = vf (3) = n and ηe = 3n
2

= ηo. Hence this vertex labeling is called

3-remainder cordial labeling of butterfly graph for all n. 2
Theorem 3.5 The graph C3 ⊙K1,n is 3-remainder cordial for all n.

Proof Let V (C3 ⊙ K1,n) = {u, v, w, ui, vi, wi : 1 ≤ i ≤ n}, E(C3 ⊙ K1,n) = {uv, vw,wu, uui,
vvi, wwi : 1 ≤ i ≤ n}. Clearly the order and size of the given graph are 3n+ 3 and 3n+ 3 respectively.

Fix Tables 1, 2 and 3 respectively to the central vertices u, v and w of C3 ⊙K1,n and also fix the

label 3 to the vertices v1, v2, v3, · · · , vn into the following two cases.

Case 1. n is even.

First we consider the vertices ui, (1 ≤ i ≤ n). Assign the label 1 consecutively to the vertices

u1, u2, · · · , un+1
2

. Next assign the label 2 to the remaining vertices un+1
2

+1
, un+1

2
+2
, · · · , un.

Next we consider the vertices wi, (1 ≤ i ≤ n). Assign the label 2 consecutively to the vertices

w1, w2, · · · , wn+1
2

. Next assign the label 1 to the remaining vertices wn+1
2

+1
, wn+1

2
+2
, · · · , wn.

Case 2. n is odd.

Assign the label 1 to the first (n
2
) vertices u1, u2, · · · , un

2
and assign the label 2 to the remain-

ing (n
2
) vertices un

2
+1, un

2
+2, . . . , un. Next we consider the vertices wi, (1 ≤ i ≤ n). Assign the

label 2 consecutively to the vertices w1, w2, · · · , wn
2

and assign the label 1 to the next (n
2
) vertices
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wn
2

+1, wn
2

+2, · · · , wn. Table 7 shows that this vertex labeling is called 3-remainder cordial labeling of

C3 ⊙K1,n for all n.

Nature of n vf (1) vf (2) vf (3) ηe ηo

n is odd n+ 1 n+ 1 n+ 1 3n+3
2

3n+3
2

n is even n+ 1 n+ 1 n+ 1 3n+4
2

3n+2
2

Table 7

This completes the proof. 2
Example 3.6 A 3-remainder cordial labeling of C3 ⊙K1,9 is shown in Figure 1.
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Could a special solutions of Einstein’s gravitational equations be applied to the whole universe?

The answer is obviously negative! However, the Schwarzschild spacetime is its a special solution in an

assumption that all matters are spherically symmetric distributed in the universe of vacuum, which

results the Big Bang hypothesis and the standard model on universe. So, we are applying a special
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