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Abstract: Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital
physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of
hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable
characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the
plasma membrane, followed by internalization and fusion of various biomolecules to different cellular
compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on
dynamics of the protein complex and signal transduction modules. To coordinate the assembly and
functions of the numerous parts of the endocytic machinery, the endocytic proteins interact signifi-
cantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar
pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiologi-
cal and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular
defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery
results in the development of pathological consequences associated with human diseases such as
cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an
in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms
describing pathological manifestation associated with dysregulated endocytosis machinery.

Keywords: endocytosis; phagocytosis; pinocytosis; receptor endocytosis signaling; chronic diseases

1. Introduction

Endocytosis is a mechanistic process, associated with internalization of the extracel-
lular materials such as microbes, cellular components, nutrients, or macromolecules [1].
Conventionally, eukaryotic cells use the endocytosis process for the absorption of molecules
and secretion of signaling transmitters (hormones and cytokines) to maintain cellular home-
ostasis [2]. Endocytosis machinery is a well-conserved physiological process in lower
to higher organisms, which has been frequently acquired for cellular defense, immune
responses, uptake, and energy metabolism [3]. Earlier, the endocytosis process was exclu-
sively attributed to the internalization of molecules across the plasma membrane, but with
the methodological advancement, it has been found that endocytosis is providing a special
route of cellular trafficking and signal transduction [4]. Notably, the cellular communication
between the extracellular and intracellular compartment of the cell is becoming incredi-
bly interesting to understand various cellular physiological and developmental processes
during normal and pathophysiological consequences [5]. The cell surface receptors have
a key role in the recognition of ligands and transduction of signals for various cellular
events to define the fate of cells. Many cellular signaling events govern through inter-
nalization of plasma membrane receptor endocytosis signaling to coordinate the network
between the extracellular and intracellular environment [4]. Christian de Duve in 1963
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coined the terminology “endocytosis”, but the concept of the endocytosis process known as
phagocytosis was defined by Elie Metchnikoff during the end of the 19th century followed
by receiving the Nobel Prize in medicine in 1908. Endocytosis is a well-defined process
of cellular logistics for material handling, processing, packaging, and transportation to
cellular compartments.

Mechanistically, there are three types of endocytosis processes described based on the
uptake of molecules, characterized as phagocytosis (uptake of large particulate; also consid-
ered as the cellular eating process), pinocytosis (uptake of liquid materials or cell drinking),
and receptor-mediated endocytosis (considered as a sensor for communications and net-
working of cellular machinery) [1,2]. The presence of the receptor on the plasma membrane
works as a sensor for detecting the signals and transmitting the signal response for the ex-
tracellular to intracellular environment of the cells. The receptor-mediated endocytosis has
been further classified into several subtypes, such as clathrin-mediated endocytosis (CME),
Caveolin-mediated endocytosis (CavME), Caveolin-independent endocytosis (CavIE), and
Clathrin-independent endocytosis (CIE) [6–9]. The endocytic signaling is further regulated
and modulated by several intracellular proteins [4]. Endocytosis evolved from prokaryotes
to eukaryotes for providing the nutrients and setup the selective communication between
extracellular and intracellular compartment of the cell through the plasma membrane. In
this review, we systematically present current understanding of the endocytosis process
and signaling in human health and disease.

2. Types of Endocytosis
2.1. Phagocytosis

Phagocytosis is a complex cellular process of multicellular organisms to ingest or
engulf solid large particles more than 0.5 µM in size including microorganisms, apoptotic
cells, or foreign substances. In unicellular organisms, it is mostly considered as a nutritional
support process for survival, and in multicellular organisms it is a vital process involved in
regulation of homeostasis pertinent to cellular defense employed by immune cells, includ-
ing macrophages, monocytes, neutrophils, dendritic, and osteoclasts [10]. In multicellular
organisms, phagocytic cells do not unnecessarily attack all types of resident microbes.
Interestingly, phagocytic cells are more trained to distinguish symbiotic and pathogenic
microbes, and it is therefore sensible to think that phagocytosis machinery is tightly regu-
lated by a highly organized and complex process. Dysfunction of the phagocytosis process
has been attributed to accumulate pathogenic loads and leads to hyper immune responses.
Mechanistically, phagocytosis consists of several sequential steps: first cellular detection of
the target/molecule, followed by internalization and formation of intracellular phagosomes
that finally fused with a lysosome to form a phagolysosome (Figure 1) [11]. Membrane
dynamics during phagocytosis are critical for the efficient capturing of entities and fusing
them with the lysosomes in the cytosol. Notably, the uptake of molecules during phago-
cytosis is preceded through the receptor selective mechanism, in which receptors form
a complex with molecules and enroute to cytoplasm followed by fusion with lysosomes
(Figure 1). The phagolysosome is an acidic and hydrolytic formulation, leading to lysis
of entities into small antigenic moieties that are transported to the cell membrane and
displayed as antigens for immune cells recognition [12]. The process of phagocytosis has
been facilitated through Fcγ receptors (FcγRs), scavenger receptors (SRs), and complement
receptors (CRs). Importantly, FcγRs and CRs-mediated phagocytosis also contributed
to macrophage proliferation and upregulation of proinflammatory TNF-α, IL-1β, IL-6,
and MMP-9 cytokine levels in murine macrophages, respectively [13,14], suggesting that
distinct phagocytic receptors have a critical role in balancing cellular differentiation and
activation during pathogenic encounters. Complement-mediated phagocytosis follows
three major pathways: namely alternative, classical, and mannose-binding lectin path-
ways. Several CRs have been described earlier and annotated based on the functional
modalities including, CR1, CR3, and CR4. The CR1 binds with ligand or opsonin C3b,
C4b, and C3bi and is responsible for the interaction with microbes or small molecules.
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Moreover, CR3 and CR4 are integrin family proteins that bind to C3bi and are required for
the ingestion of molecules [15]. Notably, complement-mediated phagocytosis may require
secondary signals, such as cytokines or chemokines for optimal function, but does not
provoke pro-inflammatory mediators and reactive oxygen species (ROS) and is considered
as non-immunogenic or anti-inflammatory [10,16]. In contrast, phagocytosis mediated by
the FcRs including FcγRI, and FcγRIIA is considered as pro-inflammatory in outcomes. The
interaction of the Fc region of antibodies to the Fc receptors leads to tyrosine phosphoryla-
tion of ITAMs (immune receptor tyrosine activation motifs) through Src-family kinases such
as Syk kinases [17]. The activation of Src/Syk kinases together with PI-3 kinase proteins
further induces downstream transcriptional activation of pro-inflammatory cytokines [18].
These studies provide a basis for future studies to address the CRs and FcγRs-mediated
phagocytosis process in the immune cells for effective clearance of pathogens and manage
the phenotype of the phagocytic cell to be anti-inflammatory.
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Figure 1. Different pathways of endocytosis. Endocytosis can be broadly classified into pinocytosis
and phagocytosis. Pinocytosis involves the internalization of small molecules, whereas phagocytosis
involves the internalization of large particles like microbes. Receptor mediated endocytosis is a selec-
tive mechanism and the complex proteins recycled to cell membrane. Caveolin encapsulates trans-
ported molecules in the caveosomes and protects against lysosomal degradation. Clathrin-mediated
endocytosis (CME) requires grafting of specific sorting sequences into membrane downturns and
recruits clathrin moieties for cargo internalization.

Apoptosis signaling is a fundamental mechanism through which unwanted and dy-
ing cells are removed from the main body stream through two key pathways: death
receptor-mediated and mitochondrial-dependent [19,20]. The apoptotic bodies are further
selectively ingested by phagocytic cells to avoid local release of cell contents and related
local inflammation [21–23]. The phagocyte recognizes “find me” and “eat me” signals
(such as lysophosphatidylcholine (LPC) and phosphatidyl serine (PS)) displayed on the
plasma membrane of apoptotic cells and transduce a signal to the cell machinery required
for engulfment [10]. The phagocytes express two kinds of membrane receptors to recognize
those “find me” and “eat me” signals: the opsonic receptors including FcRs and CRs, as
discussed above, whereas non-opsonic receptors directly recognize the pathogen with
the help of pathogen recognition receptor (PRRs), such as mannose receptor (recognize
mannans, dectin-1, dectin-2), lectine-like recognition receptor (recognizes β-glucans and
integrin), and scavenger receptor (recognize surface components on bacteria and MIN-
CLE (Macrophage inducible Ca2+-dependent lectin receptor) or DC sign (Dendritic Cell
Specific ICAM 3-grabbing non-integrin) receptors). The PRRs can recognize glycolipids
and damage-associated molecular patterns (DAMPs) including viruses, fungi, and bacteria
in the circulation and directly internalized the moieties [24–26]. Although TLRs are also
knowns as PRRs, they are not considered as non-opsonic receptors. TLRs do not directly
initiate phagocytosis but facilitate it more effectively [27]. It is well-accepted that apopto-
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sis is an evolutionary conserved process and is a very essential mechanism to maintain
cellular homeostasis in the multicellular organism. Any defects in phagocytosis results in
impaired apoptosis machinery and results in a defective immune response and may cause
susceptibility to various diseases including autoimmunity, chronic granulomatous disease,
myeloperoxidase (MPO) deficiency, Chediak–Higashi syndrome, lazy leukocyte syndrome,
leukocyte adhesion deficiency, Job’s syndrome, and chemotactic disorders [28].

2.2. Macropinocytosis

Macropinocytosis is generally considered as “cellular drinking”, which is performed
by ripples and cups of the plasma membrane to capture small size particles from the
surrounding cellular environment and internalized through miniature vesicles followed
by fusion with lysosomes and hydrolyzed into discrete nutrients [29,30]. The exact mech-
anism defining the processing of pinocytic vesicles and cellular processes is not clearly
defined. The construction of a macropinosome at the plasma membrane is a receptor-ligand-
independent event and driven by actin polymerization and downstream phosphorylation
and dephosphorylation of different signaling molecules [31]. The macropinosomes can trap
solutes in the range of 0.2–5 µm in diameter and subsequently undergo homotypic fusion
with lysosomes followed by release of to the cellular vicinity [32] (Figure 1). Notably, the
phagocytosis process internalizes large size particles, whereas macropinocytosis ingests
fluid along with smaller size particles. Macropinocytosis occurs in many cell types, includ-
ing small intestine microvilli where this process is utilized to absorb nutrients. Further,
egg cells also use pinocytosis to obtain nutrients before fertilization. The macropinocytosis
process is associated with various cellular processes, such as cell growth, cell prolifera-
tion, cell death, endocytosis, exocytosis, phagocytosis, chemotaxis, glycolysis, macrophage
activation, and proteolysis. Furthermore, macropinocytosis is a coordinated signaling
mechanism. A previous report revealed that membrane ruffling and macropinocytosis
are regulated by distinct Ras signal transduction pathways [33]. A balanced macropinocy-
tosis signaling in innate immune cells is critical to perform various defense mechanisms,
including continuous monitoring of soluble antigens, pathogen sensing, and ingestion
of pathogens [30]. In fact, release of growth factors from macrophages, such as colony-
stimulating factor-1 (CSF-1), induces macropinocytosis [34]. Moreover, cytokine C-X-C
chemokine motif ligand-12 and components of the bacterial cell wall such as lipopolysac-
charide (LPS) can stimulate macropinocytosis process [35].

Dysregulation of the macropinocytosis process further corroborates with many physio-
logical and pathological consequences, including dysregulated immune response, dysbiosis,
and chronic human disease [1]. A recent study showed that abrogating the expression of
lysosomal glutamine and asparagine transporter SNAT7 regulates mTORC1-dependent
macropinocytosis and pancreatic cancer cell proliferation, suggesting nutrients uptake
through macropinocytosis is critical for SNAT7-mTORC1 signaling [36]. An earlier study
revealed that ATP can serve as a “drink me” signal and is internalized through P2Y4 recep-
tors expressed on microglial cells and induces downstream phosphatidylinositol 3-kinase
(PI3K)/Akt downstream signaling, and targeting this signaling mechanism could be of
promising therapeutic value for the treatment of Alzheimer’s disease. [37]. These studies
shed light on the mechanisms driving macropinocytosis and highlights a critical role for
macropinocytosis in membrane dynamics and human chronic diseases.

2.3. Receptor Mediated Endocytosis

Receptor-mediated endocytosis is a key cellular event of vascular trafficking where
cargo molecules are internalized through binding to a specific receptor present on the
plasma membrane known as a clathrin-coated pit and helps to form a membrane vesicle
with the help of clathrin proteins [38,39]. Clathrin was discovered in 1975 by Barbara
Pearse, who described its key role in the formation of small vesicles for cellular uptake by
the process of endocytosis [40]. Further, it is a highly regulated cellular process for inter-
nalization of various macromolecules including viral protein, toxins, metabolites, protein
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growth factors (EGF, PDGF), and polypeptide hormones, such as insulin and luteinizing
hormone [41–43]. Mechanistically, receptor-mediated endocytosis further categorized as
clathrin-mediated endocytosis (CME), clathrin-independent endocytosis (CIE), caveolin-
mediated endocytosis (CavME), and caveolin-independent endocytosis (CavIE). Nicotinic
acetylcholine receptor is one of the most important receptors responsible for several tox-
ins induced endocytosis [44]. The endocytic signaling is a tightly regulated process and
modulated by several intracellular proteins (Figure 1).

2.3.1. Clathrin-Mediated Endocytosis
Clathrin Dependent Endocytosis

Clathrin-mediated endocytosis (CME) is the major endocytic pathway for the internal-
ization of numerous cargos [6]. Clathrin-mediated endocytosis is a term derived from the
clathrin protein, which is a key component of the endocytic process. However, in the for-
mation of clathrin-coated endocytic vesicles, more than fifty other cytosolic proteins are in-
volved [45,46]. Clathrin-mediated endocytosis (CME) progress internalization of molecules
by complex process signaling mechanism is coordinated by G-protein and tyrosine kinase
receptors and synaptic vesicle reformation as an early endosome [7]. Clathrin-mediated
endocytosis is one of the most common pathways targeted for drug delivery systems and
nano-conjugates preferably transport into cells within vesicles, referred to as early endo-
somes followed by fusion with cytoplasmic vesicles and matured into late endosomes [47].
Clathrin is a scaffold protein composed of three heavy and three light chains arranging
in a triskelion shape (Figure 1). The clathrin complex formation requires the signaling
molecules phosphatidylinositol-4,5-bisphosphate (PIP2) and adaptor proteins (AP-2) [48].
However, clathrin-coated vesicles (CCV) are formed with the help of trans-Golgi apparatus
(TGA) and AP-1 [49]. Formation of the clathrin-coated pit requires tri-protein complex
BAR (Bin/Amphiphysin/Rvs) and actin filament with subsequent dephosphorylation of
PIP2 and GTPase dynamin activity [50]. Clathrin-mediated endocytosis has been critically
regulated by multiple steps including initiation, cargo selection, maturation, and fission
under vigilance of GTPase dynamin checkpoint activity. Dynamin has key role in the
maturation of the clathrin-coated pit and is regulated by GSK3β-mediated phosphorylation
and calcium-influx-dependent phosphatase calcineurin activation [51]. A recent report
revealed that the clathrin-adaptor proteins such as the heterotetrametric adaptor protein
AP2 complex and monomeric adaptors including lymphoid myeloid leukemia protein
(CALM, known as PICALM) family and epsins, which are proteins of the clathrin assem-
bly, bind to cargo molecules and lipids in the plasma membrane [52–54]. The scaffolds
such as epidermal growth factor receptor substrate 15 (EPS15), clathrin, intersectins, and
epidermal growth factor receptor substrate 15 like 1 (EPS15R) interact with themselves
and with the clathrin adaptors to cluster the coat components together [43,55,56]. The
pioneer module, made up of the earliest assembling coat proteins, initiates the endocytic
process [39,57]. To produce the actin module, a network of actin filaments polymerizes
at the endocytic site once the coat has been assembled. The regulatory components and
actin filament network are two divisions of this module. The Wiskott–Aldrich syndrome
protein (WASP) family of proteins, which are key activators of myosin motor proteins,
actin filament nucleation, and dynamin, are part of the regulatory components [38,41].
The complex of actin-related protein 2 (ARP2), ARP3, and several other actin-binding
proteins forms the actin filament network, which is made up of actin filaments that have
been nucleated by these proteins [58]. The BAR domain proteins interact with dynamin to
mediate scission and define the scission module. Finally, the uncoating module’s proteins
localize to the endocytic site to promote the disassembly of the endocytic machinery. These
proteins include lipid phosphatases, protein kinases, and chaperones, which may also
help to regulate this process [38,59]. Importantly, viral particles take advantage of the
endocytic membrane trafficking and prefer clathrin-mediated internalization of genetic
contents into the host cells [60,61]. The continual emergence and rapid global circulation of
SARS-CoV-2 variants [62,63] suggests a strong adaptability of variants across the landscape
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and the ability to employ diverse endocytic mechanisms to gain entry into host cells [64,65].
Interfering expression of clathrin heavy chain in HEK293 (stably expressing ACE2), lim-
its SARS-CoV-2 viral infectivity [66]. Current evidence suggests that pharmacological
inhibition of endocytic pathways potentially regressed replication of novel SARS-CoV-2
lineage B.1.1.529 (Omicron variant) in VeroE6/TMPRSS2 cell, suggesting entry selectivity
of variants is associated with clinical manifestation [67].

Clathrin in-Dependent Endocytosis

Clathrin-independent endocytosis (CIE) has been implicated in multiple important
cellular functions through mediating the absorption of several receptors, extracellular
ligands, and pathogens, including viruses and various life-threatening bacterial toxins.
There are three main molecular pathways by which CIE carriers develop. Cargo capture
by cytosolic proteins is the primary mechanism used by interleukin 2 receptor (IL-2R)
endocytosis and fast endophilin-mediated endocytosis (FEME). The membrane remodeling
by acute signaling drives macropinocytosis. Finally, the clustering of extracellular lipid or
cargo by glycolipid-lectin (GL-Lect) hypothesis facilitates the uptake of cholera and shiga
toxins and receptors by the CLIC/GEEC pathway [68].

2.4. Fast Endophilin-Mediated Endocytosis

Fast endophilin-mediated endocytosis (FEME) is the first model demonstrated for clathrin-
independent endocytosis, based on the membrane curvature-active BAR (Bin/amphiphysin/Rvs)-
domain protein family member endophilin [69]. Numerous plasma membrane proteins, in-
cluding growth factor receptors, heterotrimeric G-proteins, and IL-2 receptors, use FEME,
which is triggered by ligands and preferentially occurs at the leading edge of migrating cells.
An earlier study identified that the small GTPase Cdc42 brings the BAR-domain proteins
FBP17 and CIP4 to the plasma membrane, which then recruits the phosphatases SHIP2 and
lamellipodin to stimulate the local synthesis of PIP2, which enriches endophilin [70].

2.5. CLIC/GEEC Endocytosis

Another concept for clathrin-independent endocytosis includes short, often crescent-
shaped tubular clathrin-independent carriers (CLICs) [9], which mature into early endocytic
compartments (GEECs), enriched with glycosylphosphatidylinositol (GPI)-anchored pro-
tein [71]. The actin nucleation factor ARP2/3, the small GTPases Arf1 and CDC42, the
GTPase activating factor GRAF1, and the BAR domain protein IRSp53 regulate CLIC/GEEC
endocytosis [72–74]. For the endogenous cargoes, CLIC/GEEC endocytosis is dynamin-
independent, but it is not strictly dynamin-dependent for exogenous cargoes including
shiga and cholera toxins [72].

2.6. GL-Lect Hypothesis

There is a molecular hypothesis according to which pathogenic or cellular sugar-
binding proteins bind with glycolipids and rearrange the glycolipids. This binding
promotes the biogenesis of tubular endocytic pits [8,9]. Subsequently, CLICs generate
from these pits to facilitate the cellular uptake of cellular proteins (e.g., integrins, CD44,
CD59), pathogenic products (e.g., cholera and Shiga toxins), or pathogens (e.g., SV40 virus),
which are recruited by the galectins [75–77]. These clathrin-independent processes (FEME,
CLIC/GEEC, and GL-Lect) are sensitive towards the activity of the actin cytoskeleton and
membrane organization into raft-type nanodomains [78].

2.7. Ion Channel and Endocytosis

Ion channels (IChs) are transmembrane proteins that facilitate transport of ions across
the membranes. Ich function is dependent upon their appropriate location and abundance
within the cells, which is regulated by a delicate equilibrium between endocytic, secretory,
and degradative pathways [79–81]. Ichs are frequently internalised via clathrin-mediated
endocytosis (CME), which is an extensively studied endocytic process [82,83]. Numerous
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molecular determinants involved in the cellular trafficking machinery have been identified
in the regulation of ICh dependent endocytosis. In addition, specific stimuli, such as hy-
pokalemia receptors, and some drugs can stimulate the endocytosis of many IChs [84]. The
voltage-dependent K+ channels such as Kv7.1 and KATP-sensitive (KATP) undergo CME
and are involved in tissue formation and insulin secretion, respectively [80,85]. Moreover,
two pore domain K+ channel 3.1 (K2P3.1) and nerve growth factor (NGF) promotes the
CME [86]. The voltage-gated K+ channel Kv1.2 is negatively regulated by RhoA-dependent
GTPase and leads to suppression of endocytosis [87].

Clathrin-independent endocytosis (CIE) is another mode for the internalization of
ICh [88]. Numerous IChs are found in lipid rafts and caveolae, and human diseases
are associated with their altered spatial distribution [89]. The caveolae of aortic smooth
muscle cells are the primary site for the localization of the Kir6.1 channel, the major
vascular KATP isoform. The protein kinase C (PKC)-induced internalization of Kir6.1 is
prevented by caveolae disruption with MβCD or caveolin-1 siRNA, which indicates the
functional role of caveolae compartmentalization [90]. Furthermore, the ARF6-dependent
pathway is the dynamin-independent CIE pathway. Some IChs with acidic clusters are
driven to the recycling pathway, which is regulated by ARF6 [91]. Moreover, the massive
internalization of IChs is triggered by certain specific insults. In brief, the activation of
receptors promotes the posttranslational modification (PTM) of IChs and recruitment of
mediators including ubiquitin ligases and β-arrestins, which are the key components of ion
channel endocytosis [92,93]. In addition, hypokalemic conditions and several drugs—such
as Quinidine, a class I antiarrhythmic drug, and Desipramine, a tricyclic antidepressant—
can also trigger the endocytosis of IChs [94,95]. Endocytosis significantly regulates the
plasma membrane abundance of IChs, which is important in both health and disease.

3. Caveolin Mediated Endocytosis

The caveolar pathway involves caveolae, often known as “little caves,” which are bulb-
shaped, 50–60 nm plasma membrane invaginations (Figure 1). The peripheral membrane
proteins, known as cavins, and integral membrane proteins, known as caveolins participate
in the development of caveolae [96]. Dynamin promotes budding of caveolae [97] while
caveolar endocytosis is negatively regulated by EHD2 [98]. The cargos such as folic
acid, cholera toxin B, albumin, glycosphingolipid analogs, and viruses such as SV40 and
EV1, are internalized and endocytosed via caveolae [99]. Caveolin pathways successfully
encapsulate large molecules and prevent lysosomal degradation to retain the functional
activity of molecules [100].

However, there are several pathways that do not use a caveolin coat and are captured
by viruses and bacteria to internalize into the host cell. These pathways are dependent
upon various molecules, including DNM2/Dynamin-2, cholesterol, tyrosine kinase, small
GTPases, and non-caveolar lipid rafts [89].

4. Endocytosis in Health and Disease
4.1. Cancer

Endocytosis is a complex cellular event involved in homeostasis and communication
to extracellular milieu through internalization of the plasma membrane along with its
integral membrane proteins, immunoglobulins, receptors and their ligands, and nutrients.
It is a crucial signaling event that plays a key role in cell cycle regulation, mitosis, and
apoptosis. Endocytosis is a regulated signaling mechanism and plays a potential role in
tumor suppressor pathways. It plays a critical role in signaling through endosomes and
rescue degradation of signaling molecules involved in cancer signaling, thus it appears as
a potential target in oncogenic pathways. Further, endocytosis is involved in activation
of certain cancer receptors such as Epidermal growth factor receptor (EGFR), Transferrin
receptor (TfR), and Notch receptor [101]. In addition, in human tumors, altered expression
of various endocytic regulatory factors such as clathrin-hc, clathrin- like, Caveolin-1, Nexin-1,
and Numb along with driver mutations are crucial for endocytosis [102,103]. Endocytic
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protein Numb governs the level and activity of tumor suppressive protein p53. Numb
inhibits the degradation of p53 by forming the tricomplex of p53 and Hdm2 where it
suppresses the ligase activity of Hdm2 [104]. Thus, perturbation in Numb levels may alter
the expression of the p53-associated cellular process, such as response to DNA damage,
induction of checkpoint, and apoptosis-associated proteins [105]. Furthermore, a remark-
able decline in the levels of Numb expression has been observed in approximately 50% of
breast cancer [104]. The disruption of Numb expression might have a severe impact on
tumorigenesis. The endocytic activity of Numb is associated to Numb–Notch interactions
for cell proliferation and differentiation. Importantly, endocytosis plays an indispensable
role in the aggressive nature of cancer. Endocytosis appears as an important regulator of
tumor metastasis [106]. In cancer, deregulation of several endocytic proteins is involved in
migration and invasion. There are some metastatic suppressor genes such as Kisspeptin-1
(KISS1), and metastasis suppressor protein 1 (MTSS1) whose activity depends on alteration
in the endocytosis process [106]. Kisspeptin-1 (KISS-1) inhibits cell motility, proliferation,
invasion, and metastasis in cancers [107]. However, in breast cancer, it induces invasion.
MTSS1 acts as a scaffold protein and inhibits the metastasis in various cancers. However, in
head and neck squamous cell carcinoma, a low level of MTSS1 augment the EGF signaling
and induce cell proliferation [106]. In contrast, a high level of MTSS1 exhibits a negative
influence on EGF signaling and triggers metastasis [108].

In addition, several studies showed the involvement of different classes of endocytic
proteins in the invasion of multiple cancer types, including colon, breast, colorectal, and
non-small cell lung carcinoma (NSCLC). Caveolin endocytic protein shows a regulatory
function for breast, prostate, and ovarian cancer. In the early stage of these cancers, caveolin
acts as a tumor suppressor, while in advanced stage, it is associated with tumor progression
and metastasis [109,110]. Clathrin-mediated endocytic protein AP2 modulates the cell
migration and invasion of pancreatic, ovarian, and melanoma cancer through CXCR2 [111].
Endosomal trafficking proteins such as ARF1 regulate breast cancer cell proliferation and
migration through regulating the interaction of β1 integrin and protein of focal adhesion
(paxillin, Fak, talin) [112,113]. ARF6 promotes cellular motility and invasion of glioma and
breast cancer cells by inducing internalization of E-cadherin and breakdown of adherence
junction [114]. Further, endocytic proteins of the RAB subfamily such as RAB3C and RAB3D
control invasion and metastasis of colorectal and breast cancer, respectively. Elevated ex-
pression of RAB3C promotes in vivo migration, invasion, and metastasis of colorectal
cancer while RAB3D induced breast cancer cell invasion by activating Akt/GSK-3β/Snail
pathway [115,116]. Endosomal-associated protein RAB5 promotes tumor cell migration and
invasion, focal adhesion turnover, and integrin trafficking of cancer cells [117,118]. RAB21
controls integrin-mediated cell adhesion and motility of cervical cancer cells. Earlier studies
paved a way to identify autophagy signaling proteins as a target to map their interaction
with endocytic proteins and cross-regulation in tumor progression. However, identifying
such targets is still challenging. Targeting the most viable endocytosis-associated gene(s)
may help to achieve this goal. One of the recent studies used RNAseq expression in Rubcn
knockout (KO) and wildtype (WT) group (GSE118019) [119]. We also analyzed Rubcn
gene expression in two different conditions to further explore the list of gene signatures,
pathways enriched in the presence as well as absence of Rubcn. In order to understand
the phagocytosis in tumors and their consequences, we performed gene set enrichment
analysis (GSEA) (Figure 2). Interestingly, in GSEA, we identified several important path-
ways such as apoptosis, glycolysis, hypoxia, and IFNγ response enriched in KO group
(Figure 3). Similarly, using differential gene expression analysis, we identified several
important genes such as Rab4a, Gzme, Glrp1 that were upregulated in Rubcn KO group.
This analysis suggests that the knock-out of endocytosis-associated genes also accelerates a
more immunogenic microenvironment.
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Figure 2. Gene set enrichment analysis (GSEA) showing enriched gene sets of Rubcn KO and WT
group comparison. Bars in red (positive NES) indicate significant enrichment in KO phenotype and
bars in blue indicate WT phenotype (negative NES). Data source available fromGSE118019 [102].

Cancer cells are hyper-proliferative and metastasize to the different part of the body.
As a result of malignant proliferation, tumor cells need a rapid supply of nutrients for
sustained proliferation. Macropinocytosis is a ligand-receptor-independent process and is
exploited by cancer cells for rapid nutrient acquisition [120]. An earlier study showed that
pancreatic cancer cell line KRPC was able to proliferate in the absence of essential amino
acids in the culture media but obtain amino acids through macropinocytosis from extracel-
lularly degraded albumin protein [121]. Macropinocytosis pathway can also facilitate the
internalization of essential molecules, such as ATP, to mediate cancer cell proliferation and
survival [122]. Macropinocytosis is also involved in K-Ras-mTORC1 signaling and may
induce sustained mTORC1 activation and cell proliferation in cancer cells [123]. Moreover,
macropinocytosis has been also reported in cell death of glioblastoma cancer cells with
constitutive H-Ras activation in glioblastoma cell line U251, resulting in the accumulation
macropinosomes and vacuolization of the cells [124].
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Figure 3. Enrichment plot of top four GSEA hallmarks enriched in Rubcn knockout and wildtype. Rubcn KO group enriched with significant upregulation in
apoptosis, glycolysis, hypoxia, and interferon gamma response gene sets (upper panel). Oxidative phosphorylation, p53, TGFβ signaling, and unfolded protein
response enriched in WT group (lower panel).
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4.2. Cardiovascular Disease

Cardiovascular diseases such as hypertension, coronary heart disease, stroke, and
heart failure are the leading causes of mortality and morbidity [125]. Several endocytic
proteins including sorting nexin (SNX), epsins, and disabled homolog 2 (Dab2) play an
indispensable role in cardiovascular diseases [126]. SNX is a group of cytoplasmic and
membrane-associated phosphoinositide binding proteins that play a role in protein traffick-
ing [127,128]. Impairment of SNX pathway is responsible for the development of various
forms of cardiovascular disease (CVD) [126]. In addition, SNX gene variants are also
linked to CVD. Accumulating reports revealed that SNX exhibits its function by regulating
expression and function of G protein-coupled receptors (GPCRs) such as receptor tyrosine
kinases (RTKs) and dopamine receptors for the maintenance of blood pressure [129,130]. A
previous report demonstrates that an impairment in the structure and function of SNX is as-
sociated with hypertension. Renal SNX5 expression regulates insulin degradation enzyme
(IDE) activity and is associated with blood insulin and glucose levels [131]. Decreased renal
expression of SNX5 expression leads to further elevation of systolic blood pressure and
inhibition of sodium excretion [129]. Further, studies have also established the association
of other SNX, such as SNX19, with coronary artery disease. However, the mechanistic path-
ways behind the SNXs-induced coronary artery disease remain enigmatic [126]. Moreover,
SNXs may play a key role in coronary artery pathogenesis by regulating lipid metabolism.
The influence of SNXs on a lipid level may be because of the interaction of SNX1, SNX2,
and SNX4 with leptin receptors [132]. Furthermore, studies also suggested the abnormal ex-
pression of SNX leads to heart failure. Endogenous SNX13 level reduced in failing the heart
of mice and human. In SNX13-deficient zebra fish, decreased cardiac systolic function was
associated with cardiomyocyte apoptosis, and an inhibition of which improves the cardiac
dysfunction [133]. In cardiovascular disease, atherosclerosis is a crucial player associated to
morbidity and mortality. Epsins are endocytic adaptor proteins associated with cardiovas-
cular disease [134]. Epsins are involved in endothelial cell dysfunction as well initiation and
progression of arthrosclerosis through interaction with inositol 1,4,5 triphosphate receptor
type 1 (IP3R1) [134]. Furthermore, Dab2, a multifactorial protein, plays a vital role in
several cellular functions, including cell adhesion, cell signaling, and endocytosis. More
importantly, Dab2 is associated with cholesterol metabolism and low-density lipoprotein
(LDL) uptake by regulating the LDL receptor endocytosis. An earlier study suggests that
deletion of Dab2 in liver endothelial cells results in an elevated level of serum LDL and
cholesterol [135]. An earlier study shown that the Dab2 gene variant is associated with
increased risk of coronary artery disease [136]. Interestingly, another report showed that
quercetin-mediated up-regulation of Dab2 expression attenuates the atherosclerosis [137].
Hence, Dab2 is considered as a new anti-atherosclerosis therapeutic.

Earlier reports suggested that the CD36 (cluster of differentiation 36), a transmembrane
glycoprotein receptor, plays an important role in athero-thrombotic activity and promotes
the pathological conditions such as atherosclerosis and thrombosis [138]. CD36 is a pattern
recognition receptor (PRR) and multi-functional protein that is majorly involved in the
uptake of fatty acids (FA) in adipose tissues and plays a key role in regulation of lipid
metabolism [139]. The process of FA uptake and its delivery is facilitated by caveolae-
dependent internalization of CD36. Additionally, the FA uptake mediated by CD36 is a
palmitoylation-regulated endocytic pathway [140]. The CD36 is expressed on the surface of
various cell types including skeletal and cardiac myocytes [141]. It acts as a key player in
energetics of cardiac myocytes as it facilitates FA transport, which further utilizes beta oxi-
dation and leads to energy generation. Apart from FA, CD36 also recognizes and interacts
with oxidized LDL (oxLDL), which eventually progresses atherosclerosis [142]. The oxLDL
has been shown to promote apoptosis signaling in the vascular smooth muscle cells and
contributes to atherosclerotic plaques [143]. The expression of CD36 on macrophages and
platelets also promotes signaling cascades of inflammation which eventually participates in
atherosclerotic arterial lesion formation and thrombus formation [144]. Collectively, CD36
dysfunction has been shown to contribute to the pathologies of atherosclerosis. Therefore,
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targeting the CD36-mediated transport of lipid moieties could be an effective therapeutic
approach for the treatment of atherosclerosis and thrombosis.

Moreover, the intracellular compartmentalization of G protein-coupled receptor (GPCR)
during early endosome and Golgi apparatus distribution are associated with cardiovascular
outcomes. Endosomal G protein signaling by vasopressin type 2 receptor (V2R) plays a key
role in cardiac arrest. There are three types of vasopressin receptors, including V1AR, V1BR,
and V2R, which are triggered by arginine vasopressin (AVP). An elevated level of AVP
plays a crucial role in changing the cardiovascular function and impaired renal solute-free
water excretion result in hyponatremia [145,146]. Therefore, vasopressin receptors, V2R,
have emerged as a popular target to develop the antagonist against therapeutics for cardiac
arrest and hyponatremia.

4.3. Neurological Disorders

Millions of neurons organize and perform the regular functioning of the brain and
nervous system. The fundamental role of neurons includes the transmission and receiving
of the information or signals and behaving as a unified structure. This communication of
information among the neurons is possible due to the presence of junction-like structures,
known as synapses. The communication among neurons occurs by electrical or chemical
signals. The electrical signal relies on the phenomena known as action potential. The
chemical signals are generated through the transmission of various chemicals among
neurons. Broadly, these chemicals are defined as neurotransmitters. The neurotransmitters
are stored inside the vesicle structures and tend to release at the synaptic cleft of the
synapse for the transmission of the information [147]. At the synapse, the release of
neurotransmitters relies on the two fundamental biological events, such as exocytosis and
endocytosis. The process of exocytosis is responsible for the release of neurotransmitters,
while the process of endocytosis is responsible for the recycling of the synaptic vesicle
membranes [148].

Several events occur during the process of chemical neurotransmission, such as forma-
tion of synaptic vesicles (SV), fusion with plasma membrane for releasing neurotransmitters,
and recycling of synaptic vesicles. The recycling of synaptic vesicles is the hallmark event
which comprises three key steps at the synapse; (i) release of neurotransmitters, (ii) clathrin-
mediated endocytosis, and (iii) ultrafast endocytosis [149]. Apart from those mechanisms,
several other mechanisms, such as ultrafast bulk endocytosis and activity-dependent bulk
endocytosis, are also responsible for the recycling of the vesicles [150,151]. Numerous pro-
teins play vital roles in the mechanisms of endocytosis, including amphiphysin 1 (AMPH1),
endophilin A1, clathrin, dynamin, and synaptojanin 1 (SYNJ1) [149]. Moreover, several
regulatory proteins are also involved in the regulation of endocytosis. Collectively, these
proteins function in an organized manner to propel various endocytic mechanisms, thus
efficiently recycling the SVs, which is crucial for continuous supply of neurotransmitter-
filled SVs, performance of sensory functions and maintenance of synaptic physiology [150].
These reports suggest that the process of endocytosis and associated proteins plays a
significant role in neurotransmission at synapse and maintain the neural homeostasis.

Alterations in neuronal homeostasis and poor neuronal function lead to several patho-
logical conditions collectively known as neurodegenerative diseases. In the current scenario,
neurodegenerative diseases occur prominently in a large population of the world and pose a
socio-economic burden [152]. Extensive studies suggest that the dysfunction of endocytosis
signaling at synapse participates in the progression of various neurological disorders such
as Alzheimer’s disease (AD), Parkinson’s disease, and Amyotrophic lateral sclerosis (ALS).

Alzheimer’s disease (AD) is the most prevalent type of neurodegenerative disease [153].
The major pathologies associated with AD include accumulation of amyloid-β (Aβ) plaques
and development of neurofibrillary tangles (NFTs) due to hyper-phosphorylated tau pro-
tein [154]. Deregulation of endocytic processes such as CME and CIE accumulates the
(Aβ) plaques and progresses AD [155]. The genome-wide association studies (GWAS) of
AD patients revealed that the deregulated expression of genes PICALM, BIN-1, and sorLA,
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which are essentially involved in clathrin-mediated endocytosis [156,157]. In addition, the
altered expression of Rab5, clathrin, dynamin 2, and PICALM has been found in trans-
genic Tg2576 mice AD experimental models [153,158]. Further, an elevated expression
of caveolin-1 reported in the hippocampus and cortex regions of AD brains [159]. The
endocytic signaling is considered as tightly regulated cellular process and vulnerable to
hyperphosphorylated tau protein [160]. Apart from endocytic proteins and signaling,
Endolysosomal or autophagic abnormalities play essential roles in the progression of AD
pathologies [160]. The endocytic signaling is also involved in the internalization of extra-
cellular Aβ that accumulates in endosomes and leads to neuronal toxicity [161]. Earlier
evidence suggests that the amyloid precursor protein (APP) (a major component involved
in the production of Aβ) could be internalized via CME and CIE pathways. Further, the
expression level of endocytic proteins, APP, Tau proteins, and other molecules is varied
with the age as well as AD progression. The expression of endocytic proteins such as AP180,
caveolin-2, clathrin, dynamin-1, flotillin-2, and Rab-5 has been found significantly elevated,
and that change accelerates endocytosis and progresses AD in aged brains [153]. Moreover,
elevated tau protein induces microtubule assembly and sequesters free dynamins that
impair the endocytosis and subsequently perturb the neurotransmission. The neural cells
express N-methyl-D-aspartate (NMDA) receptors which are ionotropic glutamate recep-
tors and regulate transmission of glutamate neurotransmitters. The surface expression of
NMDA receptors is tightly regulated through clathrin-dependent endocytosis [162,163] and
is shown to be endocytosed both in primary neuronal cultures and in vitro heterologous
cells [162]. NMDA receptors play an important role in Aβ-induced neurotoxicity [162].
Moreover, Aβ regulates NMDA receptor response by promoting their endocytosis and
are associated with synaptic transmission [164]. Therefore, the evidence suggests that the
alteration in the endocytosis process and associated protein expression progresses AD.

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease
associated with degeneration and subsequent loss of dopaminergic neurons [165,166].
The synaptic dysfunction is a key event prior to the loss of dopaminergic neurons and
participates in the pathogenesis of PD. In a normal human brain, the neurotransmitters
release as well as uptake and synaptic vesicles (SV) recycling occur in the synapse. The
clathrin-mediated endocytosis participates in SV recycling [151]. Further, the process
of synaptic vesicle endocytosis (SVE) regenerates a synaptic vesicle, which is a tightly
regulated event and essential for neurotransmission. During PD, the synaptic dysfunction
is associated with deregulated SVE signaling. Several genetic studies and mutation analysis
suggest that the genes such as DNAJC6, SYNJ1, SH3GL2, SNCA, LRRK2, PRKN, and
DJ-1 plays a vital role in the modulation of SVE and progression of PD [149]. The SVE
dysfunction leads to erroneous dopamine packaging into the vesicles, as a consequence of
elevated cytosolic dopamine and subsequent dopaminergic neurodegeneration [149]. Thus,
deregulated expression of endocytic genes and SVE signaling perturb dopamine signaling
and subsequent neurotransmission, which promotes the pathologies of PD. α-Synuclein
(α-syn) is a 140-amino-acid soluble acidic protein highly expressed in pre-synaptic nerves
has been implicated in the pathogenesis of PD [167]. α-syn can regulate clathrin-mediated
endocytosis of membrane receptors [168] and is involved in the regulation of NMDA
receptor endocytosis [169]. Further studies are needed to explore the mechanistic and
therapeutic potential of targeting α-syn and NMDA receptors for the treatment of PD.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated
with the central nervous system (CNS). The major pathological condition of ALS is the
degeneration of the motor neurons in CNS leading to muscles weakness [170]. Occurrence
of ALS is sporadic and familial event, and multiple genes are involved in the progression of
both types of ALS [171]. The genetic studies revealed that the mutation in the Chromosome
9 open reading frame 72 (C9ORF72) progresses ALS. Interestingly, the impaired endocytic
signaling has been observed during C9ORF72 mutated conditions in C9ORF72 ALS/FTD
patients as well as the SH-SY5Y cell line model, suggesting that the expression of C9ORF72
modulates endocytosis [172,173]. Further, the expression of C9ORF72 is associated with
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endocytosis of tropomyosin receptor kinase receptor B (TrkB) (essential for the development
and functioning of nervous system) in neurons [170]. Earlier reports suggested that the
valosin-containing protein (VCP/p97) regulates endolysosomal sorting of ubiquitylated
caveolin-1 [174]. Another protein TDP-43 (nuclear RNA binding protein) inhibits endocy-
tosis and localizes with endocytic proteins in tissue samples of ALS patients. In addition,
dynamics of endocytosis modulate TDP-43 expression in a TDP-43 ALS fly model [175].

Collectively, these studies suggest that various endocytic pathways play an essential
role in the progression of neurodegenerative diseases. Therefore, targeting the endocytic
proteins and signaling mechanism associated with endocytic processes could be the effec-
tive approach to target neurological diseases for therapeutic intervention.

4.4. Inflammatory Bowel Diseases

Epithelial integrity and barrier function are critical to separate luminal contents, includ-
ing nutrients and microbes from the underlying intestinal tissues [176,177]. Perturbations
to the epithelial integrity are believed to contribute intestinal dysbiosis and allows height-
ened microbial penetration, resulting in chronic diseases such as inflammatory bowel
disease (IBD), which is an umbrella term for Crohn’s disease (CD) and ulcerative colitis
(UC) [178,179]. Endocytotic exodus of microbes in the barrier dysfunction CD, induces
mucosal inflammation [180,181]. A case study of a 24-year-old woman with a positive
family history of Crohn’s disease showed an increased intestinal permeability precedes the
onset of Crohn’s disease [182]. Accumulating evidence shows that the intestinal barrier
integrity is chiefly regulated by several multicomplex proteins, constituted of tight junc-
tions (TJs) and adherens junctions (AJs) proteins [183]. Mammalian TJs have diverse roles,
ranging from mediating selective diffusion of molecules across the epithelium to cis and
trans interactions at sites of intercellular spaces [184]. The claudin protein family of TJs,
including junctional adhesion molecule (JAM)-A, the tight junction-associated MARVEL
proteins (TAMP), and coxsackievirus and adenovirus receptor (CAR), additionally consist
of scaffolding molecules such as the zonula occludens (ZO) protein [185], chiefly regulates
the organizational framework of intercellular barrier [186]. These claudin protein family
are fundamental to establishing the paracellular passages of nutrients between the intesti-
nal lumen and internal environment, as well as defense mechanisms against pathogens
(Table 1) [187,188]. Dysregulated expression of sealing claudins and increased intestinal
permeability contributes to a leaky epithelial barrier and may lead to intestinal infection
and bowel symptoms of IBD patients [178,189]. The dextran sulfate sodium (DSS) colitis
has been described as a most suitable in vivo experimental model of IBD to study intestinal
barrier permeability and dissemination of microbes across the intestinal lumen [190–192].
Previously in the mouse DSS colitis model, a redistribution of occludin expression was
observed compared to distinct appearance at the tight junctions of the apical membrane of
colonic epithelium [193]. Apart from claudins, expression levels of other TJ proteins, such
as JAM-A, occludin, and ZO-1, remain suppressed during intestinal inflammation [194].

Table 1. Expression modulations of claudins in the pathogenesis of IBD.

Claudins Localization Role in IBD CD UC

Claudin 1 Crypt epithelia Intestinal barrier permeability High High
Claudin 2 Surface colonocytes Paracellular permeability High High
Claudin 3 Crypt epithelia Intestinal barrier development Low Low
Claudin 4 Crypt epithelia Physiological chloride reabsorption Low Low
Claudin 5 Crypt epithelia Intestinal barrier permeability Low ND
Claudin 7 Surface colonocytes Paracellular flux of small organic solutes ND Low
Claudin 8 Crypt epithelia Na+ reabsorption Low ND
Claudin 12 Colonic epithelia Ca2+ permeability in enterocytes Low ND
Claudin 15 Colonic epithelia Na+ permeability ND ND
Claudin 18 Colonic epithelia Paracellular H+ efflux ND High

High, high expression; Low, low expression; ND, not detected.
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Adherens junctions (AJs) are cell–cell adhesion complexes and usually annotated as
“cadherins” [195]. Intestinal epithelial cells (IECs) largely express epithelial (E) cadherin,
which is required to maintain colonic epithelial barrier permeability, and dysfunction can
aggravate colitis [196]. Moreover, dysregulated expression of E-cadherin has been reported
in tissue biopsies of IBD patients [197].

The proper assembly and functioning of junctional proteins are channelized through
exocytic transportation of newly synthesized proteins to the cell surface and recycling of
mature TJs and AJs via endocytosis [198]. The defects in TJs and AJs endocytosis leading to
barrier disruption in IBD have been reported long ago [199]. The endocytosis of TJs and
AJs happens similar to the internalization of luminal antigens into the enterocytes, and IBD
patients have an increased ability to transcytosis of luminal antigens [189]. Importantly,
recycling and exocytic trafficking of TJs and AJs proteins orchestrated through interaction of
carrier vesicles and intracellular organelles [198]. Mechanistically, the membrane-targeted
trafficking of carrier vesicles mediated through the protein family of Rab small GTPases and
ultimate engrafting to lipid membrane is driven by the SNARE (soluble N-ethylmaleimide-
sensitive factor associated receptor) proteins [200]. These results highlight an involvement
of organelle-specific trafficking in the establishment of the intestinal epithelial barrier. The
intracellular network of endoplasmic reticulum (ER)-Golgi trafficking controls synthesis
and recycling of junctional proteins during intestinal inflammation [201]. Notably, the
excessive fragmentation and vascularization are the characteristic dysfunction of the ER
and the Golgi networks and observed in the intestinal mucosa of UC patients [202].

Altogether, an intact mucosal barrier restricts the infiltration of pathogenic microbes
and regulates the absorption and passage of nutrients from the intestinal lumen into the
underlying circulation. Endocytosis plays a critical role in the trafficking of intestinal junc-
tional proteins TJs and AJs; however, dysfunction of the junctional proteins is a causative
factor in the pathogenesis of IBD. Additional studies may further elucidate the molecu-
lar mechanisms associated with the dysfunction of junctional proteins trafficking during
intestinal inflammation.

5. Conclusions

Endocytosis is a key cellular event that takes place in a sequential manner that regulate
the wide range of cellular programming such as apoptosis, opsonization, cell division,
cell fate determination, and immune cell functions. Among them, receptor-mediated en-
docytosis has a vital role in multicellular organisms. The sequential processes of cargo
assembly, their transportation, and recognition by target molecules remain tightly regulated
to prevent any impairment in normal cellular processes. A balanced cellular coordination of
key endocytosis proteins is critical for the proper assembly and transportation of nutrients,
microbes, and toxins to maintain cellular homeostasis. However, alteration and dysfunction
of this process promotes several chronic diseases, including cancer, neurological disor-
ders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis,
cardiovascular disease, and inflammatory bowel disease. Therefore, in-depth scientific
validations related to mechanisms and targets of endocytosis pathways may provide a
better understanding for the diagnosis and treatment of diseases.
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