Contents

Title	Content	Page No
	Declaration by the Candidate	I
	Certificate by Supervisor	II
	Certificate by Co-Supervisor	II
	Acknowledgement	IV-V
	Contents	
	List of Figures	
	List of Tables	
	Abstract	
Chapter 1	Introduction	1-4
Chapter 2	Review of Literature	5-21
	2.1 Problem Statement	9
	2.2 Contribution of the research work towards problem	
	domain	11
	2.3 Biofertilizer	11-12
	2.3.1 Application of Bio-Fertilizers	12
	2.3.2 Significance in the Agriculture of Bio-Fertilizers	12
	2.3.3 Bio-Fertilizers are used in Agriculture	12
	2.4 Nutritional Value	13

2.5 Occurrence of disease in crops	
	13
2.5.1 Plant Diseases	13
2.5.2 Fungal diseases	14
2.5.3 Bacterial Diseases	14
2.5.4 Viral Diseases	14
2.5.5 Nematodal Disease	14
2.6 Pathogenicity of fungal pathogen	
	14-15
2.7 Antagonistic activity	
	16
2.8 Microbial Interactions	15
	17
2.0 Consortia Development	
2.9 Consortia Development	17
	17
2.10 Disease Control Management	
2.10 Discuse Control Munugement	17
2.10.1 Antibiotics	18
2.10.2 Siderophore	18
2.10.3 Bacteriocins	18
2.10.4 Lytic Enzyme	19
2.11 Biopesticides	19
2.11.1 Types of Biopesticides	19
•• •	
2.11.1.1 Microbial Pesticides	20

	2.11.1.2 Biochemical Pesticides	20
	2.11.1.3 Mode of action of Microbial Pesticides	20
	2.12 Aim & Objectives	
		20-21
Chapter 3	Materials and Methods	22-38
	3.1 Sample collection	
		22
	3.2 Physicochemical analysis of soil	
		22
	3.2.1 Soil pH	22
	3.2.2 Soil electrical conductivity	22
	2.2.2. Soil organic corbon and nitrogen	22
	3.2.3 Soil organic carbon and nitrogen	23
	3.2.4 Soil potassium content	23
	3.2.5 Soil phosphorus content	24
	3.2.6 Estimation of Micronutrients	24
	3.3 Isolation of bacteria from Soil Sample	
	•	24
	3.3.1 Spread Plate Method	24
	3.4 Identification of bacterial isolates	25
	3.5 Screening of PGPR isolates based on evaluation of	
	different traits: Qualitative characterization of PGPR	
		25
	traits of the isolated rhizobacteria(PGPR)	25

\mathbf{r}	5
L	J

	25
3.5.2 Chitinase Assay	
3.5.3 Siderophore Production	26
3.5.4 Phosphate Solubilization	26
3.6 Quantitative characterization of PGPR traits of the	26
isolated rhizobacteria (PGPR)	
3.6.1 Ammonia Production	26
3.6.2 IAA Production	27

3.7 Effect of PGPR on Monocot and Dicot Plant by Pot	
Analysis in the Laboratory Condition	27
3.7.1 Pot Culture Analysis in the Laboratory	27

3.8 Biochemical Characterization of Selected PotentBacterial Isolates28

3.8.3 Voges-Proskauer Test283.8.4 Utilization of Citrate Test293.8.5 Starch Hydrolysis293.8.6 Catalase Activity293.8.7 Motility Test29	3.8.1 Indole Test	28
3.8.4 Utilization of Citrate Test293.8.5 Starch Hydrolysis293.8.6 Catalase Activity293.8.7 Motility Test29	3.8.2 Methyl-Red Test	28
3.8.5 Starch Hydrolysis293.8.6 Catalase Activity293.8.7 Motility Test29	3.8.3 Voges-Proskauer Test	28
3.8.6 Catalase Activity293.8.7 Motility Test29	3.8.4 Utilization of Citrate Test	29
3.8.7 Motility Test29	3.8.5 Starch Hydrolysis	29
	3.8.6 Catalase Activity	29
3.8.8 Carbohydrate Fermentation29	3.8.7 Motility Test	29
	3.8.8 Carbohydrate Fermentation	29

3.9 Molecular Identification of Selected Potent Bacterial	
Isolates	30
3.9.1 16S RNA Sequencing	30

3.10 Compatibility Test	30
3.11 Development of Consortia & Pot Analysis	30-31
3.12 Isolation of fungal pathogen from infected soil and plant samples	32
3.13 Microscopic identification of fungal pathogens	32
3.14 Pathogenicity test	32
3.15 In-vitro Antifungal and Antagonistic Activity of	
Bacterial Isolates against soil borne Fungal Pathogen	
Fusarium sp.	33
3.16 Ultra Structural Study of Hyphal Cell	
ente entre suddiale stady of Hypner con	33
3.17 Study the Effect of Seed inoculation with Plant	
Growth Promoting Rhizobacteria (KC9 & KC11) by	
employing Bio-priming Method	33
3.17.1 Inoculum Preparation	33
3.17.2 Seed Treatment	33
3.17.3 Bioassay of Seed Germination	34
3.18 Development of Consortia for Biocontrol Agent	
employing KC9 & KC11	34

3.19 Effect of Seedling Germination with and without	
Treatment of PGPR strain on monocot and dicot seeds	36
3.19.1 Collection of treated monocot and dicot Seedlings	36
3.19.2 Total Chlorophyll Content	37
3.19.3 Relative water Content (RWC)	
3.19.4 Total Free Amino Acids	37
3.19.5 Total Phenolic Content	37
3.19.6 Total Flavonoid Content	38

3.18.1 In-vitro Laboratory Experiment for Pot Culture 35

3.20 Statistical Analysis

38

Chapter 4 Results and Discussion

Analysis

	39-130
4.1 Characterization of collected soil samples	39-43
4.2 Morphological Identification of PGPR	44-47
4.3 Pure culture of rhizobacterial culture strains	47-50
4.4 Growth promotion analysis of PGPR traits	50
4.4.1 HCN production	50-51
4.4.2 Chitinase production as trait of PGPR	52-53
4.4.3 Siderophore production	54
4.4.4 Phosphate solubilization	55

4.4.5 Ammonia production	56-58
4.4.6 IAA production	59-63

4.7 Effect of Seed Inoculation with Plant Growth-	
Promoting Rhizobacteria (KS2, KC8, KC9 and KC11) by	
employing bio-priming method	64
4.7.1 Inoculum Preparation	64
4.7.2 Evaluation study of PGPR trait by individual pot	65-74
study	

4.8 Biochemical Characterization of Selected Potent	
Bacterial Isolates	75
4.8.1 Indole test	75
4.8.2 Methyl Red test	75
4.8.3 Voges-Proskaeur test	76
4.8.4 Utilization of Citrate Test	76
4.8.5 Starch Hydrolysis	77
4.8.6 Carbohydrate Fermentation test	77-78

- 4.9 Molecular Identification of Selected Potent BacterialIsolates78
- 4.9.1 16S RNA Sequencing 78-82

83

- 4.10 Compatibility test
- 4.11 Consortia Development & Pot Analysis 84-94
- 4.12 Isolation and identification of fungi 95

4.14 Antifungal Activity of KS2, KC8, KC9 and KC11	96-97
Bacterial Strains against Fusarium sp.	

4.15 *In-vitro* Study on the Effect of KC9 and KC11 97 Bacterial Strains against *Fusarium sp*.

4.16 Ultra Structural Cell Study

SEM Analysis: Antagonistic activity of *Bacillus sp.* (KC9) on *Fusarium sp.*

4.17 Study the Effect of Seed and Seedling Germination 99-100 of monocot and dicot plant4.17.1 Effect of PGPR strain Inoculant on monocot and 101 dicot plant seedlings

4.18 Development of Consortia for Biocontrol Agent 101-130 employing KC9 & KC11 and Pot Analysis

Chapter 5 Conclusion 131-132

Chapter 6References133-146Appendix APlagiarism Report

Appendix B Publications

98

Sr.	Figure No.	Title	Page No
No			
1	Fig 2.1 A	schematic representation of interactions	7
		of plant pathogens by Saraf (2015)	
2	Fig 4.1	Different areas selected for the	39
		collection of samples	
3	Fig. 4.2	Pure Cultures of Rhizobacteria strains	47-48
4	Fig. 4.3	Gram staining overview of selected	49
		isolates of rhizobacteria of soil sample	
		from different agricultural fields	
5	Fig. 4.4	HCN Production test for showing	51
		positive bacterial isolates	
6	Fig. 4.5	Chitinase Production of all bacterial	52-53
		isolates showing negative result.	
7	Fig. 4.6	Siderophore production of the selected	54
		isolates	
8	Fig. 4.7	Phosphate Solubilization tests for	55
		showing positive bacterial isolates	
9	Fig. 4.8	Ammonia Production for all the	56-57
		bacterial isolates showing positive	
		results	
10	Fig. 4.9	Quantitative estimation of Ammonia	58
		Production	
11	Fig. 4.10	IAA Production test for all bacterial	59-60
		isolates showing positive result	
12	Fig. 4.11	Quantitative estimation of IAA	60
		Production	
13	Fig. 4.12	Preparation of Bacterial Inoculum for	65
		Potent Selected Isolates	

List of Figures

14	Fig. 4.13	Growth Promotion Activity of Cumin: With and Without Treatment of PGPR	65
		Strain (KS2, KC8, KC9 and KC11)	
15	Fig. 4.14	Growth Promotion Activity of	65
		Groundnut: With and Without Treatment	
		of PGPR Strain (KS2, KC8, KC9 and	
		KC11)	
16	Fig. 4.15	Growth Promotion Activity of Chickpea:	66
		With and Without Treatment of PGPR	
		Strain (KS2, KC8, KC9 and KC11)	
17	Fig. 4.16	Growth Promotion Activity of Mung:	66
		With and Without Treatment of PGPR	
		Strain (KS2, KC8, KC9 and KC11)	
18	Fig. 4.17	Growth Promotion Activity of Rice:	66
		With and Without Treatment of PGPR	
		Strain (KS2, KC8, KC9 and KC11)	
19	Fig. 4.18	Graphical Representation; In-vitro Pot	72
		Analysis of PGPR strain on Root Length	
		(cm) of Monocot & Dicot Plant	
20	Fig. 4.19	Graphical Representation; In-vitro Pot	72
		Analysis of PGPR strain on Shoot	
		Length (cm) of Monocot & Dicot Plant	
21	Fig. 4.20	Graphical Representation; In-vitro Pot	73
		Analysis of PGPR strain on No. of	
		leaves of Monocot & Dicot Plant	
22	Fig. 4.21	Indole test for the selected Bacterial	75
		Isolates	
23	Fig. 4.22	Methyl Red Fermentation test for the	75
		selected Bacterial Isolates	
24	Fig. 4.23	VP test for the selected Bacterial	76
		Isolates	
25	Fig. 4.24	Citrate Utilization test for the selected	76
		Bacterial Isolates	

26	Fig. 4.25	Starch Hydrolysis test for the selected Bacterial Isolates	77
27	Fig. 4.26	Carbohydrate Fermentation test for the selected Bacterial Isolates	77
28	Fig. 4.27	Phylogenetic Tree of KS2 bacterial strain employing Neighbor-Joining method	79
29	Fig. 4.28	Phylogenetic Tree of KC8 bacterial strain employing Neighbor-Joining method	80
30	Fig. 4.29	Phylogenetic Tree of <i>Bacillus sp</i> . (KC9)employing Neighbor-Joining method with Accession number of OQ654027	81
31	Fig. 4.30	Phylogenetic Tree of <i>Proteus sp.</i> (KC11) employing Neighbor-Joining method with Accession number of OQ652027	82
32	Fig. 4.31	Compatibility Test for consortia Development	83
33	Fig. 4.32	Effect of Consortium on Seed Germination of Monocot & Dicot Plants	84
34	Fig. 4.33	<i>In-vitro</i> Pot Analysis of Consortia study of Cumin Plant	84
35	Fig. 4.34	<i>In-vitro</i> Pot Analysis of Consortia study of Groundnut Plant	85
36	Fig. 4.35	<i>In-vitro</i> Pot Analysis of Consortia study of Chickpea Plant	85
37	Fig. 4.36	<i>In-vitro</i> Pot Analysis of Consortia study of Mung Plant	85
38	Fig. 4.37	<i>In-vitro</i> Pot Analysis of Consortia study of Rice Plant	86

39	Fig. 4.38	Graphical Representation; <i>In-vitro</i> Pot Analysis of Consortia on Root Length (cm) of Monocot & Dicot Plant	92
40	Fig. 4.39	Graphical Representation; <i>In-vitro</i> Pot Analysis of Consortia on shoot Length (cm) of Monocot & Dicot Plant	92
41	Fig. 4.40	Graphical Representation; <i>In-vitro</i> Pot Analysis of Consortia on Root Length (cm) of Monocot & Dicot Plant	93
42	Fig. 4.41	Isolation and identification of fungi.	95
43	Fig. 4.42	Phylogenetic Tree of <i>Fusarium sp</i> . employing Neighbor-Joining method with Accession number of OQ652012	95
44	Fig. 4.43	Fusarium Sp. caused Wilt Disease in Groundnut, Chickpea, Rice	96
45	Fig. 4.44	Antifungal Activity of Potent Bacterial Isolates against <i>Fusarium sp</i> .	97
46	Fig. 4.45	Antagonistic Activity of Potent Bacterial Isolates against <i>Fusarium sp.</i> by Agar Well Diffusion Method	97
47	Fig. 4.46	SEM Analysis of antagonistic activity; bacteria (KC9) interaction with hyphae of <i>Fusarium sp.</i> on PDA medium at 5th day after incubation at 28°C	98
48	Fig. 4.47	Effect of PGPR strain <i>Bacillus sp.</i> and <i>Proteus sp.</i> On Seed Germination of Monocot and Dicot Seeds	100
49	Fig. 4.48	In-vitro Pot Analysis of Consortia study with Fusarium sp. of Groundnut Plant	101
50	Fig. 4.49	<i>In-vitro</i> Pot Analysis of Consortia study with <i>Fusarium sp.</i> of Chickpea Plant	102

51	Fig. 4.50	In-vitro Pot Analysis of Consortia study	102
		with Fusarium sp. of Mung Plant	
52	Fig. 4.51	In-vitro Pot Analysis of Consortia study	103
		with Fusarium sp. of Rice Plant	
53	Fig. 4.52	Graphical Representation; In-vitro Pot	108
		Analysis of consortia on Root Length	
		(cm) of Monocot & Dicot Plant	
54	Fig. 4.53	Graphical Representation; In-vitro Pot	108
		Analysis of consortia on Shoot Length	
		(cm) of Monocot & Dicot Plant	
55	Fig. 4.52	Graphical Representation; In-vitro Pot	109
		Analysis of consortia on No. of Leaves	
		of Monocot & Dicot Plant	
56	Fig. 4.55	Graphical Representation; Total	124
		Chlorophyll Content of Monocot &	
		Dicot Plant	
57	Fig. 4.56	Graphical Representation; Relative	124
		Water Content (RWC) of Monocot &	
		Dicot Plant	
58	Fig. 4.57	Graphical Representation; Total Free	125
		amino acids of Monocot & Dicot Plant	
59	Fig. 4.58	Graphical Representation; Total	125
		Phenolic Compound of Monocot &	
		Dicot Plant	
60	Fig. 4.59	Graphical Representation; Total	126
		Flavonoid Content of Monocot & Dicot	
		Plant	

Sr. No	Table No.	Title	Page No
1	4.1	Sampling trials and sites	40
2	4.1.1	Soil Sample number-1: From Khijadiya	40
		region.	
3	4.1.2	Soil Sample number-2: From Khijadiya region	41
4	4.1.3	Soil Sample number-3: From Khijadiya region	41
5	4.1.4	Soil Sample number-4: From Veraval region	41
6	4.1.5	Soil Sample number-5: From Veraval region	42
7	4.1.6	Soil Sample number-6: From Morbi region	42
8	4.1.7	Soil Sample number-7: From Rajkot region	43
9	4.1.8	Detailing on soil isolates of rhizobacteria	43
		collected from different soil samples	
10	4.2	Morphological Identification of PGPR	44-46
11	4.3	Summary of observation of PGPR traits with selected isolates of Rhizobacteria	61-63
12	4.4	Summary of determination of potential rhizobacterial isolates showing PGPR traits	64
13	4.5	Root and shoot length of Cumin plant	67
14	4.6	Root and shoot length and No. of Leaves	68

List of Tables

15	4.7	Root Length, Shoot Length and No. of leaves of Chickpea plant	69
16	4.8	Root Length, Shoot Length and No. of leaves of Mung plant	70
17	4.9	Root Length, Shoot Length and No. of leaves of Rice plant	71
18	4.10	Representation to the Biochemical Characterization of Selected Potent Bacterial Isolates	78
18	4.11	Root Length, Shoot Length of Cumin plant	87
19	4.12	Root Length, Shoot Length and No. of leaves of Groundnut plant	88
20	4.13	Root Length, Shoot Length and No. of leaves of Chickpea plant	89
21	4.14	Root Length, Shoot Length and No. of leaves of Mung plant	90
22	4.15	Root Length, Shoot Length and No. of leaves of Rice plant	91
23	4.16	Relative Seed Germination & Germination Index of Various Seeds	99
24	4.17	Root Length, Shoot Length and No. of leaves of Groundnut plant	104
25	4.18	Root Length, Shoot Length and No. of leaves of Chickpea plant	105
26	4.19	Root Length, Shoot Length and No. of leaves of Mung plant	106
27	4.20	Root Length, Shoot Length and No. of leaves of Rice plant	107

28	4.21	Chlorophyll Content of Groundnut Plant	112
29	4.22	Chlorophyll Content of Chickpea Plant	113
30	4.23	Chlorophyll Content of Mung Plant	114
31	4.24	Chlorophyll Content of Groundnut Plant	115
32	4.25	Relative water Content (RWC) of	116
		Groundnut plant	
33	4.26	Relative water Content (RWC) of	117
		Chickpea plant	
34	4.27	Relative water Content (RWC) of Mung	118
		plant	
35	4.28	Relative water Content (RWC) of Rice	119
		plant	
36	4.29	Total Free amino acids of monocot & dicot plant	120-121
37	4.30	Total Phenolic Compound of monocot & dicot plant	121-122
38	4.31	Total Flavonoid Content of monocot & dicot plant	122-123

	ADDI Eviations
PGPR	: Plant Growth Promoting Rhizobacteria
PGPB	: Plant Growth Promoting Bacteria
IAA	: Indole-Acetic Acid
HCN	: Hydrogen Cyanide Production
Cm	: Centimetre
ISR	: Induced Systemic Resistance
PTI	: Patterns - Triggered Immunity
ETI	: Effectors-Triggered Immunity
ISAAA	: The International Service for the Acquisition of Agri-biotech Applications
GDP	: Gross domestic product
GAV	: Gross Value Added
RBD	: Rice bakanae disease
FOSC	: Fusarium oxysporum species complex
USDA	: The U.S. Department of Agriculture
APHIS	: The Animal and Plant Health Inspection Service
ARS	: Agricultural Research Service
INR	: Indian Rupee
gm	: Gram
D/W	: Distilled water
KW	: Khijadiya Wheat
K W	. Kinjaulya wincat
VC	Khile dive Conchren
KS	: Khijadiya Sorghum
WO	: Khijadiya Chickpea
KC	
VG	: Veraval Garlic
VO	: Veraval Onion
	: Morbi Corn
MC	
RC	: Rajkot Corn
N	: Normality
	•
ppm	: parts per million
nm	: Nanometer
DTPA	: Diethylenetriamine pentaacetate
PSI	: phosphate solubilizing index
mL	: Millilitre
μg	: Microgram
H_2SO_4	: Sulfuric Acid
NaOH	: Sodium Hydroxide
°C	: degree Celsius
CFU	: Colony forming unit
%	: Percentage
h	: Hour
PDA	: Potato dextrose agar
μl	: microliter
•	
RNA	: ribosomal ribonucleic acid
S	: Sulphur
EC	: electrical conductivity
pН	: Potential of Hydrogen
Fe	: Iron

Abbreviations

Mn	:	manganese
Cu	:	copper
Zn	:	zinc
CNPK	:	Carbon Nitrogen Phosphurus
IU	:	international unit
$\mu mol \cdot mL^{-1}$:	micromol/millilitre
cfu/g	:	colony-forming unit per gram
CFU/mL	:	colony-forming unit per mililiter
CRD	:	Completely Randomized Design
CD	:	Critical Difference