
    
 

1366  

Vol 44 No. 10 
October 2023 

Journal of Harbin Engineering University 
ISSN: 1006-7043 

Best Proximity Point for Generalized  Rational 
 αs-Proximal Contraction 

Amit Duhan* 1, Manoj Kumar 1, Savita Rathee 2, and Monika Swami 3 
 

1Baba Mastnath University, Rohtak, 124001, India 
2,3Maharshi Dayanand University, Rohtak, 124001, India 

 
Abstract 

Best proximity point problem in S-M(S-metric) spaces is thought to be a generalization of a G- metric spaces. 

In this study, we provide proof a best proximity points theorem of αs−Proximal mapping admissible and its 

several types by generalizing the theory of α−admissible mapping in S-M spaces. We present generalized 

rational αs−Proximal contraction type mappings and investigate the best proximity point in S-M spaces. In 
addition, we provide an illustration to show how the result can be used. 
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1 Introduction 
 
The best approximation results offer an approximation solution to fixed point equation Tζ = ζ, when a 
nonself-mapping T has no fixed point.  A well-known best approximation theorem in particular, due to Fan [6], 
reveals the fact that “ if K is a non-empty compact convex subset of a Hausdorff locally convex topological 
vector space X and T : K → X is a continous mapping, then there exists an element x satisfying the condition 
d(ζ, Tζ) = inf{d(µ, Tζ) : µ ∈ K}, where d is a metric on X ”. 

As a generalization of the idea of the best approximation, the best proximity point theory has evolved. The 
best proximity point theorem is taken into consideration when addressing a complication to discover an 
approximate solution that is optimal since it ensures the existence of an approximate solution. 

Banach Contraction principle is important for finding a fixed point.  Due to its diversity, simplicity, and 
ease of application, many scholars consider it to be one of the most fascinating topics.. In various 
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ways, they tried to apply the Banach contraction principle. Samet et al. [18] introduced the concepts of 
α−admissible mapping and α-ψ-contractive mappings in metric spaces. Findings of Samet et al. [18] 
demonstrated that Banach’s fixed point theorem and a number of other findings are immediate results of  their 
findings. But on the other hand, Sedghi et al. [19] established the idea of S-M spaces as one outcome of the 
generalization of metric spaces. 

Let B and C be two non-empty subsets of a metric space (X , d ). Choose an element ζ ∈ B is referred to as a 
fixed point on a certain map. T : B → C if T(b) = b. Certainly, T(B) ∩ B ̸= ϕ is a necessary (but not sufficient) 
situation for the existence of a fixed point of T. If T(B) ∩ B = ϕ , then d(ζ, Tζ) ≥ 0 for all ζ ∈ B that is, the set 
of fixed points of T is empty.  Under such circumstances, one frequently tries to find an element ζ which is in 
some sense closest to Tζ. Best proximity point analysis has been developed in this direction. 

Choose an element b ∈ B is called a best proximity point of T if 

d(b, T B) = d(B, C), 

where 
 
d(B, C) = inf{d(ζ, µ) : ζ ∈ B, µ ∈ C}. 

The reason being that d(ζ, Tζ) ≥ d(B, C) for all ζ ∈ B, the global minimum of the mapping ζ → d(ζ, Tζ) is 
attained at the Best proximity point. 

Hussain et al. [9] proved certain Best proximity point results in the setting of G-metric spaces. Mo- tivated by 
inspiration by Hussain et al. [9] and Sedghi et al.  [19], In this paper, we prove some best proximity point 
results in S-M spaces. 
 

2 PRELIMINARIES 
 
Initially, we must remember a few crucial definition’s, lemma’s and results for this the notion of S-M spaces as 
described below. 

Definition 2.1. [18] “Let T : X → X be a self-mapping on a metric space (X , d), and let α : X × X → [0, +∞) 
be a function.  It is said that T is α-admissible if ζ, µ ∈ X , 

α(ζ, µ) ≥ 1 =⇒ α(Tζ, Tµ) ≥ 1.” 

Example 2.2. “Consider X = [0, +∞), and define T : X → X and α : X × X → [0, +∞) by Tζ = 5ζ for 
all ζ, µ ∈ X 
 
Then T is α-admissible.” α(ζ, µ) = 

(

 

 
 
ζ 

eµ if ζ ≥ µ ζ ̸= 0 

0 if ζ < µ 
 

Definition 2.3.  [17] “Let T be a self-mapping on a metric space (X , d), and let α, η : X × X → [0, +∞) 
be two functions. T is  said  to  be an α-admissible mapping with  respect to η if  ζ, µ ∈ X , α(ζ, µ) ≥ η(ζ, µ) 
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d(u , Tζ ) = d(B, C),1 

 1 

) 

⇒ ≤ 

) 

⇒ ≤ 

α(ζ1, ζ2) ≥ η(ζ1, ζ2),  

imply α(Tζ, Tµ) ≥ η(Tζ, Tµ). 

It can be noted that if we take η(ζ, µ) = 1, then this definition reduces to Definition 2.1. Also, if we take α(ζ, 
µ) = 1, then T is said to be an η-subadmissible mapping.” 

Definition 2.4. [11] “Let T : B → C, α : B × B → [0, +∞). We say that T is α-Proximal admissible mapping if 

α(ζ1, ζ2) ≥ 1,  

d(u2, Tζ2) = d(B, C),  

for all ζ1, ζ2, u1, u2 ∈ A.” 

 
=⇒ α(u1, u2) ≥ 1 

 

Certainly if B = C then α-Proximal admissible map T converted to α-admissible map. 

Definition 2.5. [8] “Let T : B → C, and α, η : B×B → [0, +∞) be functions. We say that T is α-proximal 
admissible with respect to η if, for all ζ1, ζ2, u1, u2 ∈ B, 
 
 

d(u1, Tζ1) = d(B, C), 

d(u2, Tζ2) = d(B, C),  

=⇒ α(u1, u2) ≥ η(u1, u2). 

 

Note that if we take η(ζ, µ) = 1 for all ζ, µ ∈ B, then this definition reduces to Definition 2.4. In case 
α(ζ, µ) = 1 for all ζ, µ ∈ B, then we shall say that T is η-Proximal subadmissible mapping.” 

G = {g : [0, +∞) → [0, 1) that wayg(tn) → 1 implies tn → 0} 

Definition 2.6. [13] “A mapping T : B → C, is called Geraghty’s proximal contraction of the first kind if, there 
exists β ∈ G such that 
 
d(u, Tx) = d(A, B) 

= d(u, v) β(d(x, y))d(x, y) d(v, Ty) = d(A, B) 
 
for all u, v, x, y ∈ A.” 

Definition 2.7. [13] “A mapping T : B → C, is called Geraghty’s proximal contraction of the second kind if, 
there exists β ∈ G such that 
 
d(u, Tζ) = d(B, C) 

= d(Tu, Tv) β(d(Tζ, Tµ))d(Tζ, Tµ) d(u, Tµ) = d(B, C) 

for all u, v, ζ, µ ∈ B.” 

Definition 2.8. [19] “ Let X be a non-empty set.  An S-M on X is a function S : X × X × X → [0, +∞) 
that satisfies the following conditions for each ζ, µ, ϱ, b ∈ X : 

1. S(ζ, µ, ϱ) ≥ 0, 

2. S(ζ, µ, ϱ) = 0 if and only if ζ = µ = ϱ, 

3. S(ζ, µ, ϱ) ≤ S(ζ, ζ, b) + S(µ, µ, b) + S(ϱ, ϱ, b). 
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The pair (X , S) is called S-M space.” 

This assertion is an emphasis of G-metric spaces [14] and D∗-metric spaces [20]. Realize that each S-M on X 
induces a metric ds on X as explained by 

ds(ζ, µ) = S(ζ, ζ, µ) + S(µ, µ, ζ), for all ζ, µ ∈ X . 

Example 2.9. [19] “ Let X =R. Then 

S(ζ, µ, ϱ) = |ζ − µ| + |µ − ϱ| 
 

for all ζ, µ, ϱ ∈ R, is an S-M on X .” 

Example 2.10.  [19]“ Let X = R2 and d is ordinary metric on X .  Put 

S(ζ, µ, ϱ) = d(ζ, µ) + d(ζ, ϱ) + d(µ, ϱ) 
 
for all ζ, µ, ϱ ∈ R. Then S is an S-M on X .” 

Lemma 2.11. [19] “ Let (X , S) be an S-M space.  Then S(ζ, ζ, µ) = S(µ, µ, ζ), for all ζ, µ ∈ X .” 

Lemma 2.12. [7] “ Let (X , S) be an S-M space. Then 

S(ζ, ζ, ϱ) ≤ 2S(ζ, ζ, µ) + S(µ, µ, ϱ) and S(ζ, ζ, ϱ) ≤ 2S(ζ, ζ, µ) + S(ϱ, ϱ, µ) 

for all ζ, µ, ϱ ∈ X .” 

 

Definition 2.13. [19] Let (X , S) be an S-M space. 

1. “ A sequence {ζl} in X converges to ζ  if  and  only  if  S(ζl, ζl, ζ)  → 0  as  l  → +∞.  That  is,  for each ϵ > 
0, there exists l0 ∈ N such that, for all l ≥ l0, S(ζl, ζl, ζ)  <  ϵ,  and  we  denote  this  by liml→+∞ ζl = ζ.” 
2. “ A sequence {ζl} in X is called a Cauchy sequence if for each ϵ > 0 there exists l0 ∈ N such that 
S(ζl, ζl, ζm) < ϵ for each l, m ≥ l0.” 
3. “ That S-M space (X , S) is said to be complete if every Cauchy sequence is convergent.” 

 

We now consider the meaning of αs-admissible mappings and their generalizations in S-M spaces.In this 
article, we present a number of concepts of α-admissible mappings in the context of S-M spaces and name them 
αs-admissible. 

 

Definition 2.14. [21] “ Let T : X → X and α : X 3 → [0, +∞). Then T is said to be α−admissible if for all ζ, µ, 
ϱ ∈ X 
 

α(ζ, µ, ϱ) ≥ 1 implies α(Tζ, Tµ, Tϱ) ≥ 1.” 

Definition 2.15. [21] “ Let (X , S) be an S-M space, T : X → X and αs : X × X × X → [0, +∞).  Then 
T is called αs− admissible if u, v, w ∈ X , 

αs(u, v, w) ≥ 1 implies αs(Tu, Tv, Tw) ≥ 1.” 
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( 
e

 

d (ν, Tµ) = d (B, C),s

 s 

4 

αs(ζ, µ, ϱ) ≥ 1,  

( 
(0, µ , ϱ) if µ, ϱ ≥ 0, 

s 1 1 2 2 3 3 
0    otherwise. 

w 

Example 2.16. [16] “ Consider X = [0, +∞). Define T : X → X and αs : X × X × X → [0, +∞) by 
Tu = 4u for all u, v, w ∈ X and 
 
 

αs(u, v, w) = 
uv if u ≥ v ≥ w v ̸= 0 

 
Then T is αs−admissible.” 

0 if u < v < w 

Definition 2.17. [16] “Let (X , S) be an S-metric space, T : X → X , and let αs, ηs : X ×X ×X → [0, +∞) 
be two functions. We say that T is an αs−admissible mapping with respect to ηs if u, v, w ∈ X , αs(u, v, w) ≥ ηs(u, v, 
w) implies αs(Tu, Tv, Tw) ≥ ηs(Tu, Tv, Tw). 

Note that if we take ηs(u, v, w) = 1, then this definition reduces to Definition 2.15. ” 

Definition 2.18. [15] “Let (X , S) be an S-M space  and  let  B and  C be  two  non-empty  subsets  of  X . Then C is 
said to be approximatively compact with respect to B if every sequence {µl} in C, satisfying the condition ds(ζ, µn) 
→ ds(ζ, C) for some ζ in B has a convergent subsequence.” 
 
3 Main Result 
 
At first, we presume 
 
Ξ = {ξ : [0, ∞) → [0, ∞) such that ξ is non-decreasing and continous } where ξ(x) = 0 if and only if x = 0. 

Definition 3.1.  Let (X , S) be a S-M space and let B and C be two non-empty subset of X then T : B → C 
and αs : B × B × B → [0, +∞). We say T is αs -Proximal admissible if 
 

ds(ϑ, Tζ) = ds(B, C),  

ds(κ, Tϱ) = ds(B, C),  

for all ζ, µ, ϱ, ϑ, ν, κ ∈ B. 

 
=⇒ αs(ϑ, ν, κ) ≥ 1, (3.1) 

Example 3.2. Consider X = R and let a be any fixed positive real number, B = {(a, µ, ϱ) : µ, ϱ ≥ 0}and 
C = {(0, µ, ϱ) : µ, ϱ ≥ 0}. Define T : B → C by 
 

T(a, µ, ϱ) = 
 
Define αs : B × B × B → [0, +∞) by 

4 
(0, 4µ, ϱ)   if µ, ϱ < 0. 

α ((a, µ , ϱ ), (a, µ , ϱ ), (a, µ , ϱ )) = 

( 
2   if µi, ϱi ≥ 0 where i = 1, 2

 
 

Then S(ζ , µ, ϱ) =  1 (|ζ −ϱ|+|µ−ϱ|) is S-M on X , let ds(B, C) = |ζ −µ| and κ1 = (a, µ1, ϱ1), κ2 = (a, µ2, ϱ2), κ3 = (a, 
µ3, ϱ3), κ4 = (a, µ4, ϱ4),κ5 = (a, µ5, ϱ5), κ6 = (a, µ6, ϱ6) be arbitrary points from B satisfying, 
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4 4 4 

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

α(ζ, µ, ϱ) ≥ η(ζ, µ, ϱ),  

 

αs(κ1, κ2, κ3) = 2, 

so µ1, µ2, µ3, ϱ1, ϱ2, ϱ3 ≥ 0, 
ds(κ4, Tκ1) = a = ds(B, C), 
ds(κ5, Tκ2) = a = ds(B, C), 
ds(κ6, Tκ3) = a = ds(B, C). 

So further we solve µ4 = µ1 , ϱ4 = ϱ1,µ5 =  µ2 , ϱ5 = ϱ2 and µ6 =  µ3 , ϱ6 = ϱ3 which implies µi, ϱi ≥ 0, 
where i = 1, 2, 3. Hence αs(κ4, κ5, κ6) = 2. Therefore, T is αs-Proximal admissible map. 

Definition 3.3. Choose B and C be two non-empty subsets of an S-M space (X , S). A non-self mapping T : B → 
C is called generalized rational αs−Proximal contraction mapping if αs : B × B × B → [0, +∞) is a function and 
there exist g ∈ G and ξ ∈ Xi such that, for all ζ, ϑ, ϑ∗, µ, ν ∈ B, 

ds(ϑ, Tζ) = ds(B, C), 
ds(ϑ∗, Tϑ) = ds(B, C), 
ds(ν, Tµ) = ds(B, C), 

  
=⇒ αs(ϑ, ϑ∗, ν)ξ(S(ϑ, ϑ∗, ν)) ≤ g(ξ(∆(ζ, ϑ, µ)))ξ(∆(ζ, ϑ, µ)), 
 

(3.2) 
 

where  

∆(ζ, ϑ, µ) = max   S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
   S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)   
, 
   S(µ, µ, ζ)S(ζ, ζ, ϑ)

 

(3.3)
 

 

 

Definition 3.4. Let (X , S) be an S-M space, T : B → C, and αs, ηs : B × B × B → [0, +∞). We say T is 
αs -Proximal admissible with respect to ηs if for all ζ, µ, ϱ, ϑ, ν, κ ∈ B, we have 
 

ds(ϑ, Tζ) = ds(B, C),  
 

 

 
=⇒ α (ϑ, ν, κ) ≥ η (ϑ, ν, κ). (3.4) 

s s 
ds(ν, Tµ) = ds( , C), 

ds(κ, Tϱ) = ds(B, C),  
Recall that if we take ηs(ϑ, ν, κ) = 1,  then this definition converted to Definition 3.2.  Also,  if we take 
αs(ϑ, ν, κ) = 1, then we say that T is an ηs− Proximal subadmissible mapping. 

 
Theorem 3.5. Let B and C be two non-empty subsets of an S-M space (X , S) such that (B, S) be  a complete S-M 
space and B0 be non-empty set. B and C are approximatively compact with respect to B. Let αs : B × B × B → [0, 
+∞) be a function and T : B → C be a mapping then the following conditions hold: 

1. T is a generalized rational αs−Proximal contraction mapping. 
2. There exists ζ0 ∈ B such that αs(ζ0, ζ1, Tζ1) ≥ 1. 
3. T is continuous. 
4. If {ζl} is  a  sequence  in  B such  that  αs(ζl, ζl+1, ζl+1) ≥ 1  for  all  l  ∈ N ∪ {0} and  ζl  → ϱ ∈ B as 
l → +∞, then there exists a subsequence {ζmι } of {ζn} such that αs(ζmι , ϱ, ϱ) ≥ 1 for all k. 

Suppose that T(B0) ⊆ C0. Then T has the unique best proximity point that is, ϱ ∈ B such that ds(ϱ, Tϱ) = 
ds(B, C). 

B 
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Proof. Due to the subset B0 is not empty, we choose ζ0 in B0. Taking Tζ0 ∈ T(B0) ⊆ C0 into account, we can 
find ζ1 ∈ B0 like that 
 

ds(ζ1, Tζ0) = ds(B, C). 

Moreover, given Tζ1 ∈ T(B0) ⊆ C0, Hence, there are elements ζ2 and ζ3 in B0 such that 

ds(ζ2, Tζ1) = ds(B, C), 
ds(ζ3, Tζ2) = ds(B, C). 

Repeating this process, we get a sequence {ζl} in B0 satisfying 

ds(ζl+1, Tζl) = ds(B, C), ∀l ∈ N ∪ {0}. 

By by taking ϑ = ζl, ζ = ζl−1, ν = ζl+1, µ = ζl ,ϑ∗ = ζl+1, 

Equation 3.2 gives 
 
αs(ζl, ζl+1, ζl+1)ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(∆(ζl−1, ζl, ζl)))(ξ(∆(ζl−1, ζl, ζl)). (3.5) 

By the assumption αs(ζ0, ζ1, ζ1) ≥ 1 and T is αs−Proximal admissible, we have 

αs(ζl, ζl+1, ζl+1) ≥ 1 for all l ∈ N ∪ {0}, 
 
and ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(∆(ζl−1, ζl, ζl)))ξ(∆(ζl−1, ζl, ζl)). (3.6) 
where 

∆(ζl−1, ζl, ζl) = max

   

S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl), S(ζl, ζl, ζl−1), 

   S(ζl−1, ζl−1, ζl)S(ζl, ζl, ζl)   
, 
    S(ζl, ζl, ζl)S(ζl, ζl, ζl−1)   

,
 

1 + S(ζl−1, ζl−1, ζl)S(ζl, ζl, ζl)   1 + S(ζl, ζl, ζl)S(ζl, ζl, ζl−1) 
   S(ζl, ζl, ζl−1)S(ζl−1, ζl−1, ζl) 1 + S(ζl, ζl, ζl−1)S(ζl−1, ζl−1, ζl) 

= max{S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl−1)}. 

If max {S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl−1)} = S(ζl, ζl, ζl−1) then the Equation 3.6 becomes 

ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(S(ζl, ζl, ζl−1)))ξ(S(ζl, ζl, ζl−1)) 

< ξ(S(ζl, ζl, ζl−1)), (3.7) 

which is a contradiction. 

So max {S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl+1)} is S(ζl−1, ζl−1, ζl), 

implies 
 
ξ(S(ζl, ζl+1, ζl+1)0)) < ξ(S(ζl−1, ζl−1, ζl)) holds for all l ∈ N ∪ {0}. (3.8) 
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So, the sequence {S(ζl, ζl+1, ζl+1)} is nonnegative and nonincreasing. Now, we prove that {S(ζl, ζl+1, ζl+1)} → ϱ 
{and we claim ϱ = 0}. It is clear that {S(ζl, ζl+1, ζl+1)} is a decreasing sequence. Therefore, there exists 
some positive number t such that limn→+∞{S(ζl, ζl+1, ζl+1)} = t. 

From 3.7 we have, 
 
ξ(S(ζl+1, ζn+2, ζn+2)) 

ξ(S(ζl, ζ  
l+
1 

, 
ζl+
1 

)) 
≤ g(ξ(S(ζl, ζl+1, ζl+1))) ≤ 1. 

 

Now taking limit n → +∞ we have 1 ≤ g(ξ(S(ζl, ζl+1, ζl+1))) ≤ 1, 

that is, 
 
g(ξ(S(ζl, ζl+1, ζl+1))) = 1. 
 
As g ∈ G, we get limn→+∞ ξ(S(ζl, ζl+1, ζl+1)) = 0, that is 
 

lim 
n→+∞ 

S(ζl, ζl+1, ζl+1) = 0. (3.9) 

 

Now, we present the sequence {ζl} is a Cauchy sequence. Suppose, however that {ζl} is not a Cauchy 
sequence. Then there exist ϵ > 0 and sequences {ζmk } and {ζlk } such that, for all positive integers k, we 

have mι ≥ mι > k, 

S(ζmι , ζmι , ζmι ) ≥ ϵ. (3.10) 

In addition, in accordance with mι , we can choose mι in such a way that it is the smallest integer with 

lι ≥ mι and satisfies 3.10. Hence 

S(ζmι , ζmι , ζlk−1 ) < ϵ. (3.11) 

Set δl = 2S(ζl, ζl, ζl−1). Using the lemma 2.4 and 2.5, we have 

ϵ ≤ S(ζmι , ζmι , ζmι ) = S(ζmι , ζmι , ζmι ) 

≤ 2S(ζmι , ζmι , ζlk−1 ) + S(ζmι , ζmι , ζlk−1 ) 

≤ S(ζmι , ζmι , ζlk−1 ) + ϵ 

≤ δmι   + ϵ. (3.12) 

Letting k → +∞ in Equation 3.12 we derive that 
 

lim 
n→∞ 

S(ζmι , ζmι , ζmι ) = ϵ. (3.13)
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Also, by Lemma 2.5 we obtain the following inequalities: 
 

S(ζmι , ζmι , ζmι ) ≤ 2S(ζmι , ζmι , ζnk−1 ) + S(ζmι , ζmι , ζlk−1 ) 

≤ 2S(ζmι , ζmι , ζlk−1 ) + S(ζlk−1 , ζlk−1 , ζmι ) 

= δmι   + S(ζlk−1 , ζlk−1 , ζmι ). (3.14) 

 
S(ζnk−1 , ζnk−1 , ζmι ) ≤ 2S(ζlk−1 , ζlk−1 , ζmι ) + S(ζmι , ζmι , ζmι ) 

= δlk−1  + S(ζmι , ζmι , ζmι ). (3.15) 

Letting k → ∞ in Equation 3.15 and applying Equation 3.14 we get 
 
 
 
 
 
Now, 

lim 
k→+

∞ 

lim 
k→+

∞ 

S(ζlk−1 , ζlk−1 , ζmι ) = ϵ, 

S(ζmι , ζmι , ζlk−1 ) = ϵ. (3.16) 

 

S(ζmι , ζmι , ζmι ) ≤ 2S(ζmι , ζmι , ζmk−1 ) + S(ζmι , ζmι , ζmk−1 ) 

≤ 2S(ζmι , ζmι , ζmk−1 ) + 2S(ζmι , ζmι , ζnk−1 ) + S(ζmk−1 , ζmk−1 , ζlk−1 ) 

= δmι   + δmι   + S(ζmk−1 , ζmk−1 , ζlk−1 ). (3.17) 

 
S(ζmk−1 , ζmk−1 , ζlk−1 ) ≤ 2S(ζmk−1 , ζmk−1 , ζmι ) + S(ζmι , ζmι , ζlk−1 ) 

≤ 2S(ζmk−1 , ζmk−1 , ζmι ) + 2S(ζlk−1 , ζlk−1 , ζmι ) + S(ζmι , ζmι , ζmι ) 

= δmk−1  + δlk−1  + S(ζmι , ζmι , ζmι ). (3.18) 

Letting k → ∞ in Equation 3.18 and applying Equation 3.17 we get, 
lim 

k→+∞ 
S(ζmk−1 , ζmk−1 , ζlk−1 ) = ϵ. (3.19) 

 
 

S(ζmι , ζmι , ζmι ) ≤ 2S(ζmι , ζmι , ζmk−1 ) + S(ζmι , ζmι , ζmk−1 ) 

= δmι   + S(ζmk−1 , ζmι , ζmι ). (3.20) 

 

S(ζmk−1 , ζmι , ζmι ) = S(ζmι , ζmι , ζmk−1 ) 

S(ζmι , ζmι , ζmk−1 ) ≤ 2S(ζmι , ζmι , ζlk−1 ) + S(ζlk−1 , ζlk−1 , ζmk−1 ) 

≤ 2S(ζmι , ζmι , ζlk−1 ) + 2S(ζlk−1 , ζlk−1 , ζmι ) + S(ζmk−1 , ζmk−1 , ζmι ) 

≤ δmι   + δlk−1   + 2S(ζmk−1 , ζmk−1 , ζmι ) + S(ζmι , ζmι , ζmι ) 

= δmι   + δlk−1   + δmk−1   + S(ζmι , ζmι , ζmι ). (3.21) 
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Letting k → ∞ in Equation 3.21 and applying Equation 3.20 we get 
 

lim 
k→+∞ 

S(ζmk−1 , ζmι , ζmι ) = ϵ. (3.22) 

 

S(ζmk−1 , ζmk−1 , ζmι ) = δmk−1 , 

 
Letting k → ∞, we obtain 
 

lim 
k→+∞ 

S(ζmk−1 , ζmk−1 , ζmι ) = 0. (3.23) 

 

Consider Equation 3.6 with ϑ = ζmι , ζ = ζmk−1 , ν = ζmι , µ = ζlk−1 ,ϑ∗ = ζmι , 

S(ζmk−1 , ζmι , ζmι ) ≤ g[(∆(ζmk−1 , ζmι , ζlk−1 ][∆(ζmk−1 , ζmι , ζlk−1 )], (3.24) 

where 

∆(ζmk−1 , ζmι , ζlk−1 ) = max 

  

S(ζmk−1 , ζmk−1 , ζmι ), S(ζmι , ζmι , ζlk−1 ), S(ζlk−1 , ζlk−1 , ζmk−1 
), 

S(ζmk−1 , ζmk−1 , ζmι )S(ζmι , ζmι , ζlk−1 ) 

 
1 + S(ζmk−1 , ζmk−1 , ζmι )S(ζmι , ζmι , ζlk−1 ) 

, 
S(ζmι , ζmι , ζlk−1 )S(ζlk−1 , ζlk−1 , 

ζmk−1 )    
,
 

1 + S(ζmι , ζmι , ζlk−1 )S(ζlk−1 , ζlk−1 , 

ζmk−1 ) 

S(ζmk−1 , ζmk−1 , ζmι )S(ζlk−1 , ζlk−1 , ζmk−1 ) 
,
 

1 + S(ζmk−1 , ζmk−1 , ζmι )S(ζlk−1 , ζlk−1 , ζmk−1 ) 

 
 
∆(ζmk−1 , ζmι , ζlk−1 ) = max  

   

S(ζmk−1 , ζmk−1 , ζmι ), S(ζmι , ζmι , ζlk−1 ), S(ζlk−1 , ζlk−1 , ζmk−1 )

    

. (3.25) 
Using the Equations 3.16,3.19,3.23 in 3.25 we obtain, 
δ1(ζmk−1 , ζmι , ζlk−1 ) = max{0, ϵ, ϵ} 

= ϵ. (3.26) 
 
Now taking limit k → ∞ in Equation 3.24 and using Equations 3.2,3.26, we obtain, 

ξ(ϵ) ≤ g(ξ(ϵ)).ξ(ϵ) ξ(ϵ) = 1. 
 
This contradicts itself by implying that ϵ = 0. Hence, 
 

lim 
k→+∞ 

(S(ζmι , ζmι , ζmk+1 )) = 0. (3.27) 

 

Thus {ζl} is a Cauchy sequence. Since (B, S) is complete S - metric space, so there exists ϱ ∈ B such that 
{ζl} → ϱ as l → ∞. 
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B 

l→∞ 

Conversely, for all l ∈ N , , 

ds(ϱ, C) ≤ ds(ϱ, Tζl) 

≤ ds(ϱ, ζl+1) + ds(ζl+1, Tζl) 

= ds(ϱ, ζl+1) + ds(B, C). (3.28) 
Taking limit as l → ∞ in above inequality, we discover lim ds(ϱ, Tζl) = ds(ϱ, C) = ds( , C). 
l→∞ 

Since C is approximatively compact with respect to B so the sequance {Tζl} has a subsequence {Tζmι } 

that converges to some µ∗ ∈ C. Hence, 

ds(ϱ, µ∗) =  lim ds(ζlk+1 , Tζmι ) = ds(B, C), (3.29) 

and so ϱ ∈ B0. Now since Tϱ ∈ TB0 ⊆ C0, so there exist κ ∈ B0 such that 

ds(κ, Tϱ) = ds(B, C). 

By Equation 3.6 with ϑ = ζl+1, ζ = ζl, ν = κ, µ = ϱ , ϑ∗ = ζn+2 

we have 
 
ξ(S(ζl+1, ζl+2, κ)) ≤ g(ξ(∆(ζl, ζl+1, ϱ)))ξ(∆(ζl, ζl+1, ϱ)), (3.30) 
where 

∆(ζl, ζl+1, ϱ) = max{S(ζl, ζl, ζl+1), S(ζl+1, ζl+1, ϱ), S(ϱ, ϱ, ζl), 

   S(ζl, ζl, ζl+1)S(ζl+1, ζl+1, ϱ)        S(ζl+1, ζl+1, ϱ)S(ϱ, ϱ, ζl)  
, , 

1 + S(ζl, ζl, ζl+1)S(ζl+1, ζl+1, ϱ)   1 + S(ζl+1, ζl+1, ϱ)S(ϱ, ϱ, ζl) 

S(ϱ, ϱ, ζl)S(ζl, ζl, ζl+1) 

1 + S(ϱ, ϱ, ζ )S(ζ , ζ , ζ )
}, 

l l    l    l+1 
 

∆(ζl, ζl+1, ϱ) = max{S(ζl, ζl, ζl+1), S(ζl+1, ζl+1, ϱ), S(ϱ, ϱ, ζl)}. 

Taking the limit l → ∞ 
 

lim ∆(ζl, ζl+1, ϱ) =  lim max{S(ζl, ζl, ζl+1), S(ζl+1, ζl+1, ϱ, S(ϱ, ϱ, ζl)} 

l→∞ n→∞ 

= 0. 
 

Taking the limit l → ∞ in equation(3.28) and using liml→∞ ∆(ζl, ζl+1, ϱ) = 0, we get 

ξ(S(ϱ, ϱ, κ)) ≤ g(ξ(0))ξ(0) = 0. 

Then S(ϱ, ϱ, κ) = 0. That is ϱ = κ, so ds(ϱ, Tϱ) = ds(B, C). Consequently, T has the “best proximity 
point”. 

Now we prove the uniqueness of “best proximity point” Suppose that p q such that ds(p, Tp) = ds(B, C)
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8 
1 

( 

s 

2 

and ds(q, Tq) = ds(B, C). Now by 3.6, with ζ = ϑ = ϑ∗ = p and µ = ν = q we get 

ξ(S(p, p, q )) ≤ g(ξ(∆(p, p, q )))ξ(∆(p, p, q )), (3.31) 

where 

∆(p, p, q ) = max    S(p, p, p), S(p, p, q ), S(q, q, p), 
    S(p, p, p)S(p, p, q) 

 
1 + S(p, p, p)S(p, p, q ) 

   S(p, p, q)S(q, q, p) S(q, q, p)S(p, p, p)  

1 + S(p, p, q )S(q, q, p) 1 + S(q, q, p)S(p, p, p) 

= max{S(p, p, q ), S(q, q, p)}. 

If max {S(p, p, q ), S(q, q, p)} = S(p, p, q ) then from Equation 3.31, we get 

ξ(S(p, p, q )) ≤ g(ξ(S(p, p, q )))ξ(S(p, p, q )), 

< ξ(S(p, p, q )) 
 
which is a contradiction.  Thus max {S(p, p, q ), S(q, q, p)} = S(q, q, p), again Equation 3.31 implies 

ξ(S(p, p, q )) ≤ g(ξ(S(q, q, p)))ξ(S(q, q, p)), 

< ξ(S(q, q, p)). 
 
As ξ is non decreasing, then q = p. 
 
Example 3.6. Let X = [0, +∞). It’s simple to observe that S(ζ, µ, ϱ) = 1 (|ζ − ϱ| + |µ − ϱ|) is an S-M on 
X . Then also, let ds(B, C) = 2 |ζ − µ|.  Let B = {1, 2, 3, 4} and C = {6, 7, 8, 9} Define T : B → C 

T = 
6 ζ = 4, 

ζ + 4 otherwise. 
 

Also define , 

α (ϑ, ν, κ) = 

( 
1    if ϑ, ν, κ ∈ B, 

0 otherwise. 

Also  consider  g  :  [0, +∞)  → [0, 1)  and  ξ  :  [0, ∞)  → [0, ∞)  defined  by  ξ(ζ)  =  ζ, g(ζ)  =  ζ  respectively. 
Clearly ds(B, C) = 1, B0 = {4}, C0 = {6} and T(B0) ⊆ T(C0).  Let ds(ϑ, Tζ) = ds(B, C) and ds(ν, Tµ) = 
ds(B, C)  =  1.  Then  (ϑ, ζ), (ν, µ)  ∈ {(4, 4), (4, 2)}.   Also,  if  ds(ϑ∗, Tϑ)  =  ds(B, C)  =  1,  then  ϑ∗ =  4. 

Therefore, if 
 
ds(ϑ, Tζ) = ds(B, C), 

ds(ϑ∗, Tϑ) = ds(B, C), 

ds(ν, Tµ) = ds(B, C), 

then 

(ϑ, ϑ∗, ν, ζ, µ) ∈ {(4, 4, 4, 4, 4), (4, 4, 4, 2, 2), (4, 4, 4, 2, 4), (4, 4, 4, 4, 2)}. 
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1+t 

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

1 + S(1, 1, 4)S(T 4, 4, 1) 1 + S(4, 4, 1)S(2, 2, 1) 

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

Now ϑ = ϑ∗ = ν = 4 so, ξ(S(ϑ, ϑ∗, ν)) = 0. Hence, 

ξ(S(ϑ, ϑ∗, ν)) = 0 ≤ 
1 

x ≤ g(ξ(∆(ζ, ϑ, µ)))ξ(∆(ζ, ϑ, µ)), 
 

where  

∆(ζ, ϑ, µ) = max   S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
   S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)   
, 
    S(µ, µ, ζ)S(ζ, ζ, ϑ)     

 

.
 

 

Let ζ = 2, ϑ = 1, µ = 4, we obtained 
 

∆(2, 1, 4)    =    max    S(2, 2, 1), S(1, 1, 4), S(4, 4, 2), 
    S(2, 2, 1)S(1, 1, 4)   

, 
1 + S(2, 2, 1)S(1, 1, 4) 

 

     S(1, 1, 4)S(4, 4, 1) 
, 
   S(4, 4, 1)S(2, 2, 1)     

 
 

=    max 

   
1 

, 
3 

, 
1, 

, 
 3 

, 
 3 

, 
1 

   

= 
3 

.
 

4 4   2   19 11 9 4 
 

Thus T is a generalized rational αs−Proximal contraction mapping. All the conditions of Theorem 3.2 are true and 
T has a unique best proximity point. Here, ϱ = 4 is the unique best proximity point in T 
 
If in Theorem 3.2 we take ξ(s) = s, g(t) = tr where 0 < r < 1 and r ∈ (0, ∞) then we deduce the 
following corollary. 

Corollary 3.6.1. Suppose B, C be two non-empty subsets of a S-M space (X , S) such that (B, S)  is  a complete S-M 
space, B0 is non-empty, and C is approximatively compact with respect to B. Assume that T : B → C is a non-self-
mapping such that T(B0) ⊆ C0 and, for ζ, µ, ϑ, ϑ∗, ν ∈ B 
 

ds(ϑ, Tζ) = ds(B, C), 
ds(ϑ∗, Tϑ) = ds(B, C), 
ds(ν, Tµ) = ds(B, C), 
 
holds where 0 < r < 1. 

  
=⇒ αs(ϑ, ϑ∗, ν)S(ϑ, ν, κ) ≤ ∆(ζ, ϑ, µ)r∆(ζ, ϑ, µ) 

and ∆(ζ, ϑ, µ) = max    S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
    S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)   
, 
    S(µ, µ, ζ)S(ζ, ζ, ϑ)     

 

. 

 
 

Then T has unique best proximity point, that is, there exists unique ϱ ∈ B such that ds(ϱ, Tϱ) = ds(B, C) If in  

 

Theorem 3.2 we take ξ(s) = s, g(t) = 1 then we conclude the following corollary. 
 
Corollary  3.6.2.  Suppose B, C be two non-empty subsets of an S-M space (X , S) such that (B, S) is a 
complete S-M space, B0 is non-empty, and C is approximatively compact with respect to B.  Assume that 
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1+∆(ζ,ϑ,µ) 

  

  

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

  

T : B → C is a non-self-mapping such that T(B0) ⊆ C0 and for ζ, µ, ϑ, ϑ∗, ν ∈ B 

ds(ϑ, Tζ) = ds(B, C), 
ds(ϑ∗, Tϑ) = ds(B, C), 
ds(ν, Tµ) = ds(B, C), 

 

=⇒ αs(ϑ, ϑ∗, ν)S(ϑ, ϑ∗, ν) ≤ 1 ∆(ζ, ϑ, µ) 

 

where ∆(ζ, ϑ, µ) = max    S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
    S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)   
, 
    S(µ, µ, ζ)S(ζ, ζ, ϑ)     

 

.
 

 

holds for 0 ≤ r < 1. Then T has unique best proximity point that is, there exists unique ϱ ∈ B such that ds(ϱ, Tϱ) 
= ds(B, C). 
 
In Theorem 3.2 we can have another result. 

Let (X , S) be a S-M space, and let αs, ηs : B × B × B → [0, +∞) be a function. Mapping T : B → C is called 
generalized rational αs−Proximal contraction type mapping with respect to ηs if there exist g ∈ G such that, for 
all ζ, ϑ, ϑ∗, µ, ν ∈ B. 
αs(ϑ, ϑ∗, ν) ≥ ηs(ϑ, ϑ∗, ν) 

=⇒ S(ϑ, ϑ∗, ν) ≤ g(ξ(∆(ζ, ϑ, µ)))ξ(∆(ζ, ϑ, µ)) where, 

∆(ζ, ϑ, µ) = max   S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
   S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)         S(µ, µ, ζ)S(ζ, ζ, ϑ)  
, . 

 

Theorem 3.7. Let (X , S) be a CS-M space. Let T be an αs−Proximal admissible mapping with respect to ηs 
such that the following hold: 

1. T is a generalized rational αs− Proximal contraction type mapping. 
2. There exists ζ0 ∈ X such that αs(ζ0, ζ0, Tζ0) ≥ ηs(ζ0, ζ0, Tζ0). 

3. This continuous. 

4. If {ζl} is a sequence in X such that αs(ζl, ζl, ζl+1) ≥ ηs(ζl, ζl, ζl+1) for all l ∈ N ∪{0} and ζl → ϱ ∈ B as  l → 
+∞,  then  there  exists  a  subsequence  {ζmι } of  {ζl} such  that  αs(ζmι , ζmι , ϱ) ≥ ηs(ζmι , ζmι , ϱ) for all k. 

Then T has best proximity point. 
 
Proof. Since subset B0 is not empty, we take ζ0 in B0. Taking Tζ0 ∈ T(B0) ⊆ C0 into account, we can find 
ζ1 ∈ B0 such that 
 

ds(ζ1, Tζ0) = ds(B, C). 

Further, since Tζ1 ∈ T(B0) ⊆ C0, it follows that there are element ζ2 and ζ3 in B0 such that

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 
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ds(ζ2, Tζ1) = ds(B, C), 
ds(ζ3, Tζ2) = ds(B, C). 

Recursively, we obtain a sequence{ζl} in B0 satisfying 

ds(ζl+1, Tζl) = ds(B, C), ∀l ∈ N ∪ {0}. 

By taking ϑ = ζl, ζ = ζl−1, ν = ζl+1, µ = ζl, ϑ∗ = ζl+1, Equation 3.2 gives 

αs(ζl, ζl+1, ζl+1)ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(∆(ζl−1, ζl, ζl)))(ξ(∆(ζl−1, ζl, ζl)). (3.32)  

By condition (3), we have αs(ζ0, ζ1, ζ1) ≥ ηs(ζ0, ζ1, ζ1) 

 
ηs(ζl, ζl+1, ζl+1)ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(∆(ζl−1, ζl, ζl)))(ξ(∆(ζl−1, ζl, ζl)). 

By the assumption ηs(ζ0, ζ1, ζ1) ≥ 1 and T is αs− Proximal admissible, we have 
ηs(ζl, ζl+1, ζl+1) ≥ 1 for all l ∈ N ∪ {0}. 

 
ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(∆(ζl−1, ζl, ζl)))ξ(∆(ζl−1, ζl, ζl)) (3.33) 
where 

∆(ζl−1, ζl, ζl) = max

   

S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl), S(ζl, ζl, ζl−1), 

   S(ζl−1, ζl−1, ζl)S(ζl, ζl, ζl)   
, 
    S(ζl, ζl, ζl)S(ζl, ζl, ζl−1)   

,
 

1 + S(ζl−1, ζl−1, ζl)S(ζl, ζl, ζl)   1 + S(ζl, ζl, ζl)S(ζl, ζl, ζl−1) 
   S(ζl, ζl, ζl−1)S(ζl−1, ζl−1, ζl) 1 + S(ζl, ζl, ζl−1)S(ζl−1, ζl−1, ζl) 

= max{S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl−1)}. 

If max {S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl−1)} = S(ζl, ζl, ζl−1) then the Equation 3.33 becomes 

ξ(S(ζl, ζl+1, ζl+1)) ≤ g(ξ(S(ζl, ζl, ζl−1)))ξ(S(ζl, ζl, ζl−1)) 

< ξ(S(ζl, ζl, ζl−1)), (3.34) 

which is a contradiction. 

So max {S(ζl−1, ζl−1, ζl), S(ζl, ζl, ζl+1)} is S(ζl−1, ζl−1, ζl). 

This implies 
 
ξ(S(ζl, ζl+1, ζl+1)0)) < ξ(S(ζl−1, ζl−1, ζl)) holds for all l ∈ N ∪ {0}. (3.35)  
 
In a similar way Theorem 3.2, we can prove that T has a best proximity point. 
 
Theorem 3.8.  Let B, C be two non-empty subsets of an S-M space (X , S) such that (B, S) is a complete 
S-M space, B0 is non-empty, and C is approximatively compact with respect to B. Assume that T : B → C 
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d (ϑ∗, Tϑ) = d (B, C),s

 s 
1+S(ζ,ζ,ϑ) 

∗     ∗1+S(ϑ   ,ϑ   ,ζ) 

l 

is a non-self-mapping such tha T(B0) ⊆ C0 and, for ζ, µ, ϑ, ϑ∗, ν ∈ B 

ds(ϑ, Tζ) = ds(B, C),  

ds(ν, Tµ) = ds(B, C),  

S(ϑ, ϑ∗, ν) ≤ αS(ζ, ζ, ϑ) + β 

√
S(ζ,ζ,ϑ)S(ζ,ζ,µ)

 

+γS(µ, µ, ζ) + δ   S(µ,µ,ζ)  

 
 
(3.36) 

 

holds where α, β, γ, δ ≥ 0 and α + β + γ + δ < 1. Then T has the unique best proximity point. 

Proof. Following the same lines in the proof of Theorem 3.2, we can construct a sequences {ζl} inB0 
satisfying 
 

ds(ζl+1, Tζn) = ds(B, C); ∀l ∈ N ∪ {0}. 

From (3.36) with ζ = ζl−1, ϑ = ζl, µ = ζl, ν = ζl+1, ϑ∗ = ζl+1, we obtain 
 
S(ζ , ζ 

 
, ζ ) ≤ αS(ζ 

, ζ , ζ ) + β 

√
S(ζl−1, ζl−1, ζl)S(ζl−1, ζl−1, ζl) 

 

 
l    l+1 l+1 l−1  l−1  l 1 + S(ζl+1, ζl+1, ζl−1) 

+ γS(ζl, ζl, ζl−1 ) + δ
  S(ζl, ζl, ζl−1)  1 + S(ζl−1, ζl−1, ζl) 

β δ 
= (α + 
1 + S(ζ 

 
l+
1 

, 
ζl+
1 

, 
ζl−1 

+ γ + 
) 1 + 
S(ζ 

l−
1 

, 
ζl−1 

, ζ )
)S(ζl−1, ζl−1, ζl) 

≤ (α + β + γ + δ)S(ζl−1, ζl−1, ζl), 

for all l ∈ N ∪ {0}. This implies 

S(ζl, ζl+1, ζl+1) ≤ klS(ζ0, ζ0, ζ1), (3.37) 

where k = α + β + γ + δ < 1. Now, for all m, l ∈ N , n < m, by Lemma 2.4 and Equation 3.36, we have 

S(ζl, ζm, ζm) ≤ 2S(ζl, ζl, ζl+1) + S(ζm, ζm, ζl+1) 

= 2S(ζl, ζl, ζl+1) + S(ζl+1, ζl+1, ζm) 

n 
≤ 2k  S(ζ0, ζ0, ζ1) + 2S(ζl+1, ζl+1, ζl+2) + S(ζm, ζm, ζl+2) 

= 2knS(ζ0, ζ0, ζ1) + 2S(ζl+1, ζl+1, ζl+2) + S(ζl+2, ζl+2, ζm) 

: 

: 

≤ 2[kl + .............................................. + km−1]S(ζ0, ζ0, ζ1) 

2kl 
≤ 

1 − k 
S(ζ0, ζ0, ζ1). 

Taking limit as n, m → ∞,  we get S(ζl, ζl, ζm) → 0. This gives that {ζl} is a Cauchy sequence in S-M space (X 
, S).  Due to the completeness of (B, S), there exists ϱ ∈ B such that {ζl} converges to ϱ.  As in the proof of 
Theorem 3.2, we have ds(κ, Tϱ) = ds(B, C) for some κ ∈ B0. From Equation 3.36 with 

 
 
  

 

=⇒ 
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√

≤

 

 

ds(ϑ, Tζ) = ds(B, C),  

ζ = ζl−1, ϑ = ζl, ϑ∗ = ζl+1, µ = ϱ and ν = κ, we deduce 
 
S(ζ , ζ 

 
, κ) ≤ αS(ζ 

, ζ , ζ ) + β 

√
S(ζl−1, ζl−1, ζl)S(ζl−1, ζl−1, z) 

 

 
l    l+1 l−1 l−1 l 1 + S(ζl+1, ζl+1, ζl−1) 

+ γS(ϱ, ϱ, ζ l−
1 

) + δ
  S(ϱ, ϱ, ζl−1) 

. 
1 + S(ζl−1, ζl−1, ζl) 

 

By taking limit as l → ∞ in the inequality mentioned above, we obtain S(ϱ, ϱ, κ) = 0; that is ϱ = κ.  Hence, 
ds(ϱ, Tϱ) = ds(κ, Tϱ) = ds(B, C); that is, T has the best proximity point.  To prove uniqueness, suppose 
that p q, ds(p, Tp) = ds(B, C) and ds(q, Tq) = ds(B, C). Now by Equation 3.36 with ζ = ϑ = ϑ∗ = p and 

µ = ν = q we have, 
 

S(p, p, q ) αS(p, p, p) + β 
S(p, p, p)S(p, p, q )

 
1 + S(p, p, p) 

S(q, q, p) 
+ γS(q, q, p) + δ  

 
1 + S(p, p, p) 

≤ (γ + δ)S(q, q, p) 

= (γ + δ)S(p, p, q ), 
 
which implies S(p, p, q ) = 0. Hence p = q , that is T has the unique best proximity point. 
 
By taking β = γ = δ = 0 in Theorem (3.5), we obtain the following Corollary: 
 
Corollary 3.8.1. Suppose B, C be two non-empty subsets of an S-M space (X , S) such that (B, S) is a 
complete S-M space, B0 is non-empty, and C is approximatively compact with respect to B. Assume that T : B → 
C is a non-self-mapping such that T(B0) ⊆ C0 and, for ζ, µ, ϑ, ν ∈ B 
 

ds(ϑ∗, Tϑ) = ds(B, C), 

ds(ν, Tµ) = ds(B, C),  

=⇒ S(ϑ, ϑ∗, ν) ≤ αS(ζ, ζ, ϑ) 

holds where 0 ≤ α < 1. Then T has the unique best proximity point.  
 
4 Application to Fixed Point Theory 
 
In this section, as an application of our best proximity results, we will derive certain new fixed point 
results 

Note that if 
 
ds(ϑ, Tζ) = ds(B, C), 
ds(ϑ∗, Tϑ) = ds(B, C), 
ds(ν, Tµ) = ds(B, C), 

 

 
 
=⇒ αs(ϑ, ϑ∗, ν)ξ(S(ϑ, ϑ∗, ν)) ≤ g(ξ(∆(ζ, ϑ, µ)))ξ(∆(ζ, ϑ, µ)), 
 

(4.1) 



    
 

1383  

Vol 44 No. 10 
October 2023 

Journal of Harbin Engineering University 
ISSN: 1006-7043 

  

1 + S(ϑ, ϑ, µ)S(µ, µ, ζ) 1 + S(µ, µ, ζ)S(ζ, ζ, ϑ) 

where 

∆(ζ, ϑ, µ) = max   S(ζ, ζ, ϑ), S(ϑ, ϑ, µ), S(µ, µ, ζ), 
   S(ζ, ζ, ϑ)S(ϑ, ϑ, µ)   

, 
1 + S(ζ, ζ, ϑ)S(ϑ, ϑ, µ) 

   S(ϑ, ϑ, µ)S(µ, µ, ζ)   
, 
   S(µ, µ, ζ)S(ζ, ζ, ϑ)

 

(4.2)
 

 

and B = C = X , then ϑ = Tζ, ϑ∗ = Tϑ, and ν = Tµ. That is, ϑ∗ = T2ζ. Therefore, if in Theorem 3.5 we take B 
= C = X , we deduce the following recent result. 

Theorem 4.1. Let B be non-empty subsets of an S-M space (X , S) such that (B, S) be a complete S-M space 
and B0 be non-empty set. B is approximatively compact with respect to B. 
 
1. T is a generalized rational αs−Proximal contraction mapping. 
2. There exists ζ0 ∈ B such that αs(ζ0, ζ1, Tζ1) ≥ 1. 
3. T is continuous. 

Then T has a fixed point ϱ ∈ B , and T is a Picard operator, that is, {Tnζ0} converges to a. 

Theorem 4.2. Let B be non-empty subsets of an S-M space (X , S) such that (B, S) be a complete S-M space 
and B0 be non-empty set. B is approximatively compact with respect to B. 
 
1. T is a generalized rational αs−Proximal contraction mapping. 
2. There exists ζ0 ∈ B such that αs(ζ0, ζ1, Tζ1) ≥ 1. 
3. T is continuous. 
4. If {ζl} is  a  sequence  in  B such  that  αs(ζl, ζl+1, ζl+1) ≥ 1  for  all  l  ∈ N ∪ {0} and  ζl  → ϱ ∈ B as 
l → +∞, then there exists a subsequence {ζmι } of {ζn} such that αs(ζmι , ϱ, ϱ) ≥ 1 for all k. 

Then T has a fixed point ϱ ∈ B , and T is a Picard operator, that is, {Tnζ0} converges to a. 
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