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Abstract

The graph Gσ is obtained from graph G by attaching self loops on
σ vertices. The energy E(Gσ) of the graph Gσ with order n and

eigenvalues λ1, λ2, . . . , λn is defined as E(Gσ) =

n
∑

i=1

∣

∣

∣

∣

λi −

σ

n

∣

∣

∣

∣

.

It has been proved that if σ = 0 or n then E(G) = E(Gσ).
The obvious question arise: Are there any graph such that E(G) =
E(Gσ) and 0< σ < n? We have found an affirmative answer of this
question and contributed a graph family which satisfies this property.

Keywords: Eigenvalue, Energy, Self-loops

1 Introduction

For standard terminology and notations related to graph theory, we follow Bal-
akrishnan and Ranganathan [9] while any terms related to algebra we depend
on Lang [11].

An undirected graph without multiple edges and self-loops is called a sim-
ple graph. The adjacency matrix A(G) of a simple graph G with vertex set

1
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{v1, v2, . . . , vn} is n-ordered symmetric matrix A(G) = [aij ] such that,

aij =

{

1 if the vertex vi is adjacent with vertex vj ,

0 if the vertex vi is not adjacent with vertex vj .

The characteristic polynomial of the adjacency matrix A(G) is denoted by
φ(G : x). The roots of characteristic polynomial λ1, λ2, . . . , λn are called the
eigenvalues of graph G. The energy E(G) of graph G is developed by Gutman
[4] in 1978 as E(G) =

∑n

i=1
|λi|.

This graph energy is an emerging subject for a researchers of applied math-
ematics and mathematical chemistry. A brief account of graph energy of simple
graphs can be found in [3, 8, 10] as well as in the books [2, 13]. The variants
of graph energy can be found in [1, 7, 12].

Recently the concept of energy of graphs with self-loops is open-up by
Gutman et al. [5]. Let Gσ be the graph obtained from graph G by attaching self
loops on σ chosen vertices. The adjacency matrix A(Gσ) of graph Gσ is an n×n

symmetric matrix such that A(Gσ) = A(G) + Iσ, where Iσ is a square matrix
of order n with exactly σ ones on the main diagonal and all other entries are
zero. The eigenvalues of A(Gσ) are denoted by λ1(Gσ), λ2(Gσ), · · · , λn(Gσ).
The energy E(Gσ) of Gσ is

E(Gσ) =

n
∑

i=1

∣

∣

∣

∣

λi(Gσ)−
σ

n

∣

∣

∣

∣

Gutman et al. have [5] conjectured that for any graph G of order n, E(G) <
E(Gσ). Irena et al. [6] have disproved this conjuncture by showing examples
of graphs such that E(G) > E(Gσ). It has been shown that [5] if σ = 0 or n

then E(G) = E(Gσ). In the present paper we have obtained a graph family
such that E(G) = E(Gσ) and 0 < σ < n.

2 Main Results

Theorem 1 Let G be the simple graph of order n with eigenvalues λ1, λ2, · · ·
, λn and Gl be the graph obtained from G by adding a loop on each vertex of G then

E((G ∪Gl)n) = 2E(G), if |λi| ≥
1

2
, for each i = 1, 2, · · · , n.

Proof : Let Hn = G ∪ Gl. The graph Hn contains 2n vertices and n loops.
The adjacency matrix of H is given by:

A(Hn) =

[

A(G) 0
0 A(G) + In

]
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The characteristic polynomial of above matrix is given by:

φ(Hn : x) =

∣

∣

∣

∣

xI −A(G) 0
0 xI − (A(G) + In)

∣

∣

∣

∣

It follows that if λ1, λ2, · · · , λn are eigenvalues of A then,

φ(Hn : x) =

n
∏

i=1

(x− λi)(x− (λi + 1))

The roots of above characteristic polynomial are:

x = λi, x = λi + 1

, for each i = 1, 2, · · · , n
Here,

E(Hn) =

n
∑

i=1

(∣

∣

∣

∣

λi −
n

2n

∣

∣

∣

∣

+

∣

∣

∣

∣

λi + 1−
n

2n

∣

∣

∣

∣

)

=

n
∑

i=1

(∣

∣

∣

∣

λi −
1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
1

2

∣

∣

∣

∣

)

(1)

Suppose that |λi| ≥
1

2
, for all 1 ≤ i ≤ n then

∣

∣

∣

∣

λi −
1

2

∣

∣

∣

∣

=















|λi| −
1

2
, if λi ≥ 0

|λi|+
1

2
, if λi < 0

and

∣

∣

∣

∣

λi +
1

2

∣

∣

∣

∣

=















|λi|+
1

2
, if λi ≥ 0

|λi| −
1

2
, if λi < 0

Therefore, from equation 1

E(Hn) =

n
∑

i=1

(∣

∣

∣

∣

λi −
1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
1

2

∣

∣

∣

∣

)

=
∑

λi≥0

(∣

∣

∣

∣

λi −
1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
1

2

∣

∣

∣

∣

)

+
∑

λi<0

(∣

∣

∣

∣

λi −
1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
1

2

∣

∣

∣

∣

)

=
∑

λi≥0

(

|λi| −
1

2
+ |λi|+

1

2

)

+
∑

λi<0

(

|λi|+
1

2
+ |λi| −

1

2

)
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= 2





∑

λi≥0

|λi|+
∑

λi<0

|λi|





= 2

n
∑

i=1

|λi|

= 2E(G)

Example 1 We now given an example of graph G such that E(G) = E(Gσ) and
0 < σ < n. Consider the graph H = K3 ∪ K3 and H3 = K3 ∪ Kl

3. The graph
H3 contains 6 vertices and three loops. It is known fact that E(K3) = 4 and hence
E(H) = E(K3 ∪K3) = 2E(G) = 2(4) = 8.

K3 ∪ K3 K3 ∪ K
l
3

Fig. 1

The adjacency matrix of H3 is:

A(H3)=

















0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

















The eigenvalues of Kl
3 are 31, 21, (−1)2 and 02.

Hence,

E(H3) =

∣

∣

∣

∣

3−
3

6

∣

∣

∣

∣

+

∣

∣

∣

∣

2−
3

6

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

− 1−
3

6

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

0−
3

6

∣

∣

∣

∣

= 8.

Therefore, E(H) = E(H3).

Theorem 2 Let G be the simple graph of order n with eigenvalues λ1, λ2, · · ·
, λn and Gl be the graph obtained from G by adding a loop on each vertex of G. Let

p and q be non-negative integer and p + q = m then E((pG ∪ qGl)qn) = mE(G), if
|λi| ≥ max

( p
m ,

q
m

)

, for each i = 1, 2, · · · , n.
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Proof : Let Hqn = pG ∪ qGl. The graph Hqn contains mn vertices and qn

loops. The adjacency matrix of Hqn is given by:

A(Hqn) =





























A(G) 0 · · · 0 0 0 · · · 0
0 A(G) · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · A(G) 0 0 · · · 0
0 0 · · · 0 A(G) + In 0 · · · 0
0 0 · · · 0 0 A(G) + In · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · 0 0 0 · · · A(G) + In





























The characteristic polynomial of above matrix is given by:

φ(Hqn : x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xI −A(G) · · · 0 0 · · · 0
...

. . .
...

...
... 0

0 · · · xI −A(G) 0 · · · 0
0 · · · 0 xI − (A(G) + In) · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · xI − (A(G) + In)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

It follows that if λ1, λ2, · · · , λn are eigenvalues of A then,

φ(Hqn : x) =

n
∏

i=1

(x− λi)
p(x− (λi + 1))q

The roots of above characteristic polynomial are:

x = λi(p− times), x = λi + 1(q − times)

, for each i = 1, 2, · · · , n
Here,

E(Hqn) =

n
∑

i=1

(

p

∣

∣

∣

∣

λi −
qn

mn

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi + 1−
qn

mn

∣

∣

∣

∣

)

=

n
∑

i=1

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi +
m− q

m

∣

∣

∣

∣

)

=

n
∑

i=1

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

(2)

Case− i : Either p > q or p < q

⇒ max
( p

m
,
q

m

)

=
p

m
or max

( p

m
,
q

m

)

=
q

m
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If max
( p

m
,
q

m

)

=
p

m
then we suppose |λi| ≥

p

m
>

q

m
and

if max
( p

m
,
q

m

)

=
q

m
then we suppose |λi| ≥

q

m
>

p

m
, for all 1 ≤ i ≤ n.

Therefore,

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

=















|λi| −
q

m
, if λi ≥ 0

|λi|+
q

m
, if λi < 0

and

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

=















|λi|+
p

m
, if λi ≥ 0

|λi| −
p

m
, if λi < 0

Therefore, from equation 2

E(Hqn) =

n
∑

i=1

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

=
∑

λi≥0

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

+
∑

λi<0

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ q

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

=
∑

λi≥0

(

p|λi| −
pq

m
+ q|λi|+

pq

m

)

+
∑

λi<0

(

p|λi|+
pq

m
+ q|λi| −

pq

m

)

= p





∑

λi≥0

(

|λi| −
p

m
+ |λi|+

p

m

)

+
∑

λi<0

(

|λi|+
p

m
+ |λi| −

p

m

)





= p





∑

λi≥0

2|λi|+
∑

λi<0

2|λi|





= 2pE(G)

= (p+ q)E(G)

= mE(G)

Case− ii If p = q then we assume |λi| ≥
p

m
, for all 1 ≤ i ≤ n then

∣

∣

∣

∣

λi −
p

m

∣

∣

∣

∣

=















|λi| −
p

m
, if λi ≥ 0

|λi|+
p

m
, if λi < 0
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and

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

=















|λi|+
p

m
, if λi ≥ 0

|λi| −
p

m
, if λi < 0

Therefore, from equation 2

E(Hqn) =

n
∑

i=1

(

p

∣

∣

∣

∣

λi −
q

m

∣

∣

∣

∣

+ p

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

= p





∑

λi≥0

(∣

∣

∣

∣

λi −
p

m

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)

+
∑

λi<0

(∣

∣

∣

∣

λi −
p

m

∣

∣

∣

∣

+

∣

∣

∣

∣

λi +
p

m

∣

∣

∣

∣

)





= p





∑

λi≥0

(

|λi| −
p

m
+ |λi|+

p

m

)

+
∑

λi<0

(

|λi|+
p

m
+ |λi| −

p

m

)





= p





∑

λi≥0

2|λi|+
∑

λi<0

2|λi|





= 2pE(G)

= (p+ q)E(G)

= mE(G)
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