Title	Content	Pg. No.
	Declaration by the Candidate	Ι
	Certificate by Supervisor	II(a)
	Certificate by Co- Supervisor	II(b)
	Thesis Approval Form	III
	Acknowledgement	IV
	Contents	VI
	List of Tables	Х
	List of Figures	XII
	Abbreviation	XV
	Abstract	XVII
Chapter 1	Introduction, Literature Review and Objectives	
1.1	Introduction	1
1.2	Integration of Medicinal Plants into Modern Medicine	1
1.3	Complementary and Alternative Medicine (CAM)	2
1.3.1	Herbal Medicines: A Key Component of CAM	3
1.4	Global Expansion and Key Drivers of the Herbal	3
	Medicine Market	
1.5	Quality and Safety Concerns	4
1.5.1	The Risks of "Natural" Remedies: Toxicity and Long-	5
	Term Effects	
1.5.2	Adulteration and Substitution: A Growing Concern for	5
	Herbal Quality and Safety	
1.5.2.1	Factor Influencing Unintentional Adulteration	6
1.5.2.2	Factor Influencing Intentional Adulteration	7
1.6	Regulatory Framework and Guidelines	9
1.7	The Global Landscape of Pharmacopoeias	11
1.8	Quality Control Methods in Herbal Medicine	12
1.8.1	Microscopic Authentication	12
1.8.2	Analytical Authentication	13
1.8.3	DNA-based Authentication	14

Contents

itle	Content	Pg. No.
1.8.3.1	PCR-Based Authentication: Conventional, Second, and	14
	Third-Generation PCR	
1.8.3.2	Sequence-based authentication of herbal products	16
1.9	Research gap for the quality control methods	17
1.1	Significant of Phyllanthus emblica, Terminalia	18
	bellirica and Terminalia chebula	
1.11	Rationale for DNA-Based Authentication of	20
	Phyllanthus emblica, Terminalia bellirica, and	
	Terminalia chebula	
1.12	Contribution of the research work toward the problem	21
	domain	
1.13	Hypotheses	21
1.14	Objectives of the Research	22
1.15	Research approach	22
Chapter 2	Optimization of DNA Isolation from Fruits of	
	Terminalia bellirica (TB), Terminalia chebula (TC),	
	Terminalia bellirica (TB), Terminalia chebula (TC), and Phyllanthus emblica (PE) for PCR-Based	
2.1	and Phyllanthus emblica (PE) for PCR-Based	37
2.1 2.2	and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication	37 38
	and Phyllanthus emblica (PE) for PCR-BasedAuthenticationIntroductionMaterial and Methods	
2.2	and Phyllanthus emblica (PE) for PCR-BasedAuthenticationIntroductionMaterial and Methods	38
2.2	and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i>	38
2.2 2.2.1	and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing	38 38
2.2 2.2.1	and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol	38 38
2.2 2.2.1 2.2.2	and Phyllanthus emblica (PE) for PCR-BasedAuthenticationIntroductionMaterial and MethodsPlant Material Collection, DNA Isolation, and rbcLGene SequencingOptimization and Selection of DNA Extraction Protocolfrom Dried Fruits and Market Products	38 38 38
2.2 2.2.1 2.2.2 2.2.2	 and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol from Dried Fruits and Market Products DNA Quality Evaluation using <i>ITS2</i> Metabarcode 	38 38 38 40
2.2 2.2.1 2.2.2 2.2.2 2.2.3 2.2.4	 and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol from Dried Fruits and Market Products DNA Quality Evaluation using <i>ITS2</i> Metabarcode Species-Specific PCR Assay 	38 38 38 40 40
2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	 and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol from Dried Fruits and Market Products DNA Quality Evaluation using <i>ITS2</i> Metabarcode Species-Specific PCR Assay Digital PCR (dPCR) 	38 38 38 40 40 40
2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	 and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol from Dried Fruits and Market Products DNA Quality Evaluation using <i>ITS2</i> Metabarcode Species-Specific PCR Assay Digital PCR (dPCR) Validation of Market Formulation with HPTLC of 	38 38 38 40 40 40
2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	and <i>Phyllanthus emblica</i> (PE) for PCR-Based Authentication Introduction Material and Methods Plant Material Collection, DNA Isolation, and <i>rbcL</i> Gene Sequencing Optimization and Selection of DNA Extraction Protocol from Dried Fruits and Market Products DNA Quality Evaluation using <i>ITS2</i> Metabarcode Species-Specific PCR Assay Digital PCR (dPCR) Validation of Market Formulation with HPTLC of Gallic Acid	 38 38 38 40 40 40 40 41

Title	Content	Pg. No.
2.3.2	Species-specific PCR Assay Optimization	44
2.3.3	Determination of the Dynamic Range of Digital PCR	46
	with Fruit DNA	
2.3.4	HPTLC with Gallic acid	47
2.4	Conclusion	48
Chapter 3	Designing of new metabarcode and evaluating their	
	efficacy through NGS platform	
3.1	Introduction	65
3.2	Material and Methods	66
3.2.1	Collection of Reference Plant Material	66
3.2.1.1	Molecular Authentication of Reference Plant	66
3.2.2	Primer Designing	66
3.2.3	Preparation of Different Mock Controls	67
3.2.4	PCR Optimization and Library Preparation	67
3.2.5	Metabarcoding	68
3.2.6	Metabarcoding data analysis	68
3.3	Results and Discussion	69
3.3.1	PCR assays using Newly Designed ITS2 Primers and	69
	Fusion Primers	
3.3.2	Establishing Data Analysis Pipeline using Mock	70
	Controls	
3.3.3	Metabarcoding of Different Types of Mock Controls	70
3.4	Conclusion	71
Chapter 4	DNA-based authentication of Triphala polyherbal	
	formulation	
4.1	Introduction	89
4.2	Materials and Methods	90
4.2.1	Triphala Mock Control Preparation	90
4.2.2	Plant Collection, Market Samples, DNA Isolation,	90
	Species-specific PCR	
4.2.3	ITS2 Metabarcoding and Bioinformatic Analysis	90
4.3	Results and Discussion	90

Title	Content	Pg. No.
4.3.1	DNA Isolation and Quality Control	91
4.3.2	Species-Specific PCR Assay	91
4.3.3	Metabarcoding of Mock Controls and Herbal Products	91
4.4	Conclusion	92
Chapter 5	Summary and Conclusion	
5.1	Summary and conclusion	101
5.2	Limitations and future perspective	103
	Bibliography	105-131
Appendix A	Plagiarism Report	
Appendix B	Publication	134

Table No.	Name of Table	Pg. No.
Table 1.1	Summary of monographs and formulations in the Ayurvedic	24
	pharmacopoeia of India (API).	
Table 1.2	Advantages and limitations of quality control methods used for	25
	detection of adulteration in medicinal plants.	
Table 1.3	Recent advancement in DNA-based authentication in medicinal	26
	plant material.	
Table 1.4	Details of key genes and loci for medicinal plant barcoding.	29
Table 1.5	Details of the medicinal plants used in this study.	30
Table 1.6	Overview of Current Analytical Methods Available for Quality	31
	Assessment of Triphala.	
Table 1.7	Quality Control Methods for Phyllanthus emblica, Terminalia	32
	bellirica, and Terminalia chebula.	
Table 2.1	Details about Species-specific primers and universal primers.	49
Table 2.2	Optimization of DNA Isolation Protocols form dried fruit tissue.	50
Table 2.3	a) Conventional PCR reaction set up using species specific primer.	51
	b) Conventional PCR cycling condition for species specific primer.	
Table 2.4	a) Digital PCR reaction set up using species specific primer.	52
	b) Digital PCR cycling condition for species specific primer.	
Table 2.5	DNA quantification and PCR assay results from optimization	53
	protocols listed in Table 2.2.	
Table 2.6	Results of digital PCR.	54
Table 3.1	a) PCR reaction set up using <i>ITS2</i> metabarcode.	73
	b) PCR cycling condition for <i>ITS2</i> metabarcode.	
Table 3.2	PCR amplification of 45 medicinal plant species with new ITS2	74
	metabarcode.	
Table 3.3	Details of reads obtained through ITS2 metabarcoding for mock	75
	controls.	
Table 3.4	Detection of medicinal plant species using ITS2 metabarcoding in	76
	type 1 mock controls.	
Table 3.5	Detection of medicinal plant Species using ITS2 metabarcoding in	77
	in type 2 mock controls.	

List of Tables

Table No.	Name of Table	Pg. No.
Table 4.1	Details of reads obtained through ITS2 metabarcoding for mock	95
	controls and Triphala market formulations.	
Table 4.2	Relative abundance (% reads) of non-targeted plant species	96
	detected in mock control and Triphala market formulations.	

List	of	Figures
------	----	----------------

Figure No.	Name of the Figure	Pg. No.
Figure 1.1	Challenges in the Herbal Product Industry.	33
Figure 1.2	Key factors influencing the herbal products industry: demand,	34
	regulatory challenges, and quality control methods.	
Figure 1.3	Overview of global regulatory frameworks for traditional	35
	medicines, highlighting the regulatory bodies, frameworks, and	
	key safety standards.	
Figure 1.4	Research Framework.	36
Figure 2.1	ITS2 metabarcode amplification using 11 different DNA	55
	optimization protocols.	
Figure 2.2	Optimization of Species-specific primers using leaf DNA at 52,	56
	56, and 62 °C annealing temperature.	
Figure 2.3	Species-specific PCR amplification using 11 different DNA	57
	optimization protocols.	
Figure 2.4	Sensitivity assay using 10 ng to 0.01 ng DNA input from leaf	58
	(a-c) and dried fruit (d-f) tissues of Terminalia bellirica (TB),	
	Terminalia chebula (TC), and Phyllanthus emblica (PE) with	
	species-specific primers.	
Figure 2.5	Evaluation of DNA quality using ITS2 metabarcode for the	59
	authentication of single-drug market formulations.	
Figure 2.6	Evaluation of a species-specific PCR assay for the	60
	authentication of single-drug market formulations.	
Figure 2.7	Digital PCR sensitivity assay for a) Terminalia bellirica (TB),	61
	b) Terminalia chebula (TC), and c) Phyllanthus emblica (PE)	
	fruit DNA.	
Figure 2.8	Linear Relationship Between DNA Concentration (ng) and	62
	Corresponding DNA Copy Numbers in a) Terminalia bellirica	
	(TB), b) Terminalia chebula (TC) and c) Phyllanthus emblica	
	(PE) fruit DNA using dPCR.	
Figure 2.9	HPTLC analysis of gallic acid in single-drug market	63
	formulations.	

Figure No.	Name of the Figure	Pg. No.
Figure 3.1	Bioinformatics pipeline for designing of ITS2 Metabarcode	78
	primer.	
Figure 3.2	Schematic representation of different types of mock controls	79
	prepared in this study.	
Figure 3.3	Optimized bioinformatics pipeline for ITS2 metabarcoding data	80
	analysis.	
Figure 3.4	Optimization of ITS2 metabarcode using DNA from leaves of 5	81
	plant species at 52 and 56 °C annealing temperature.	
Figure 3.5	ITS2 metabarcode amplification using DNA from leaves of 45	82
	plant species belonging to different families and genera.	
Figure 3.6	ITS2 metabarcode fusion primers optimization assay using DNA	83
	from leaves of 5 different plant species with at 52 and 56 $^{\circ}\mathrm{C}$	
	annealing temperature.	
Figure 3.7	Detection of medicinal plant species using ITS2 metabarcoding	84
	in type 1 mock control with 97%, 98%, and 99% OTU clustering	
	to optimize the bioinformatics pipeline.	
Figure 3.8	Detection of medicinal plant species using ITS2 metabarcoding	85
	in type 1 mock, after discarding clusters with fewer than 5 or 10	
	reads, to optimize the bioinformatics pipeline.	
Figure 3.9	Relative abundance (% reads) of medicinal plant species	86
	detected in the first type of mock controls through ITS2	
	metabarcoding. Plant species details are provided in Table 3.4.	
Figure 3.10	Relative abundance (% reads) of medicinal plant species	87
	detected in the second type of mock controls through ITS2	
	metabarcoding. Plant species details are provided in Table 3.5.	
Figure 4.1	PCR using ITS2 metabarcode with mock control and Triphala	97
	market formulation.	
Figure 4.2	Species-specific PCR assay results with mock control (MC) and	98
	Triphala market formulation (T1 to T6) with respective primers.	
Figure 4.3	Relative abundance of the plant species detected in Triphala in	99
	mock control (MC) and Market formulation (T1 to T6) through	
	ITS2 metabarcoding sequencing.	

Figure No.	Name of the Figure	Pg. No.
Figure 4.4	Family-wise distribution and occurrence within Triphala market	100
	formulations.	

Abbreviation & Units

List of Abbreviation

AFLP	Amplified Fragment Length Polymorphism
API	Ayurvedic Pharmacopoeia of India
BLAST	Basic Local Alignment Tool
bp	Base pair
BSA	Bovine serum albumin
CAM	Complementary and Alternative Medicine
CE	Capillary electrophoresis
Chl:IAA	Chloroform: Isoamyl alcohol
CTAB	Cetyltrimethylammonium bromide
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates
EDTA	Ethylenediaminetetraacetic acid
EMA	European Medicines Agency
EU	European Union
FDA	Food and Drug Administration
GC	Gas chromatography
H ₂ O	Water
HPLC	High-performance liquid chromatography
HPTLC	High-performance thin-layer chromatography
ISSR	Inter-simple sequence repeat
ITS	Internal transcribed spacer
Mt	Metric ton
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NCBI	National Center for Biotechnology Information
NIR	Near-infrared spectroscopy
NMR	Nuclear magnetic resonance
nrDNA	Nuclear ribosomal DNA
PCR	Polymerase chain reaction
PE	Phyllanthus emblica
PVP	Polyvinylpyrrolidone

RAPD	Randomly amplified polymorphic DNA
rbcL	Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit
rDNA	Ribosomal DNA
RFLP	Restriction fragment length polymorphism
SCAR	Sequence-characterized amplified region
SSR	Simple sequence repeat
Taq	Thermus aquaticus
ТВ	Terminalia bellirica
ТС	Terminalia chebula

List of Units

°C	degree Celsius
g	gram
mg	milligram
μg	microgram
ng	nanogram
μl	microliter
nmol	nanomole
pmol	picomole
Μ	molar
mM	millimolar
w/v	weight per volume