Title	Content	Page No
	Declaration by the candidate	Ι
	Certificate by supervisor	II
	Acknowledgement	III
	Contents	VII
	List of tables	Х
	List of figures	XIV
	List of abbreviation	XVII
	Abstract	XX
Chapter 1	Introduction	1-29
	1.1 Introduction to micropropagation	1
	1.1.1 Limitations of traditional micropropagation methods	7
	1.1.2 Factors affecting micropropagation	12
	1.2 Problem statement based on literature review	18
	1.3 Objectives	19
Chapter 2	General Laboratory Supplies and Practices	31-36
	2.1 Selection and preparation of plant material	31
	2.2 Methods of plant tissue culture	32
	2.2.1 Culture media	32
	2.2.2 Culture conditions	34
Chapter 3	Micropropagation in Altered Growth Condition- Morphological Studies	37-80
	3.1 Experiments on effect of different growth condition on plant growth	37
	3.1.1 Materials and methods	41
	3.1.1.1 Experiments on liquid culture system	41
	3.1.1.2 Experiment on temporary immersion in <i>in vitro</i> shoot growth	42
	3.1.1.3 Experiment on CO ₂ enrichment	42

Content

Title	Content	Page No
	3.1.1.4 Experiment on culture vessels environment	43
	3.1.1.5 Experiment on altered gelling agents	44
	3.1.1.6 Experiment on liquid seaweed extract	44
	3.1.1.7 Experiment on effects of polyamines	45
	3.1.1.8 Materials and methods of in vitro rooting	45
	3.1.2 Results	46
	3.1.2.1 Role of liquid medium	46
	3.1.2.2 Effect of temporary immersion in <i>in vitro</i> shoot growth	47
	3.1.2.3 Effect of CO ₂ Enrichment on <i>in vitro</i> plant growth	47
	3.1.2.4 Effect of culture vessels environment	48
	3.1.2.5 Effect of different gelling agents	51
	3.1.2.6 Effect of liquid seaweed extract	51
	3.1.2.7 Effects of polyamines	51
	3.1.2.8 Effect on <i>in vitro</i> rooting	52
	3.2 Morphology of studies on leaf surface structure	52
	3.2.1 Materials and methods	54
	3.2.1.1 Scanning electron microscopy	54
	3.2.2 Results	55
	3.3 Histological studies	55
	3.3.1 Materials and methods	56
	3.3.2 Results	57
Chapter 4	Micropropagation in Altered Growth Condition- Physiological Studies	81-99
	4.1 Studies on water relations	82
	4.1.1 Materials and methods	83
	4.1.2 Results	84
	4.2 Carbonic anhydrase enzyme activity	87
	4.2.1 Materials and methods	87
	4.2.2 Results	88

Title	Content	Page No.
Chapter 5	Micropropagation in Altered Growth Condition- Biochemical Studies	101-133
	5.1 Studies on different biochemical parameters	101
	5.1.1 Materials and methods	105
	5.1.2 Results	107
Chapter 6	Micropropagation in Altered Growth Condition- Molecular Evaluation	135-145
	6.1 Molecular evaluation of genetic fidelity	135
	6.1.1 Materials and methods	138
	6.1.2 Results	140
Chapter 7	Discussion	147-172
	7.1 Growth of plant in different growth condition	148
	7.2 Studies on leaf surface structures	156
	7.3 Studies on water relations	162
	7.3.1 Water loss studies	162
	7.3.2 Biomass accumulation and water content	164
	7.4 Carbonic anhydrase activity	167
	7.5 Studies on biochemical investigation	167
	7.6 Studies on molecular evaluation of genetic fidelity	169
Chapter 8	Conclusion	173-179
	Bibliography	181-226
Appendix A	Plagiarism Report	
Appendix B	Publications	

List of Tables

Table No.	Name of Tables	Page No.
Table 1.1	A list of tissue culture industries in India recognized by the Department of Biotechnology (DBT), organized by states	21
Table 1.2	Utilization of liquid culture systems for the micropropagation of various plant species	22
Table 1.3	A list of various types of temporary immersion systems used in the micropropagation of different plant species	24
Table 1.4	Studies on the use of CO ₂ enrichment during the micropropagation of various plant species	27
Table 2.1	List of inorganic/organic salts, carbon source, vitamins, and solidifying agents used in generalized plant tissue culture media	35
Table 3.1	Effect of liquid culture medium on <i>in vitro</i> growth and shoot multiplication in rose	58
Table 3.2	Effect of temporary immersion in liquid medium on <i>in vitro</i> shoot growth and multiplication in rose	58
Table 3.3	Effect of CO ₂ enrichment with and without sucrose on <i>in vitro</i> shoot growth and multiplication in rose, grown on semi-solid medium	59
Table 3.4	Effect of CO ₂ enrichment with and without sucrose on <i>in vitro</i> shoot growth and multiplication in rose, grown on liquid medium	60
Table 3.5	Effect of different vessel's type on <i>in vitro</i> shoot growth and multiplication in rose grown on semi-solid medium	61
Table 3.6	Effect of different vessel's type with use of glass marble as support material on <i>in vitro</i> shoot growth and multiplication in rose grown on liquid medium	62
Table 3.7	Effect of different vessel's type with use of water balls as support material on <i>in vitro</i> shoot growth and multiplication in rose grown on liquid medium	63

Table No.	Name of Tables	Page No.
Table 3.8	Effect of different vessel's type with use of tissue paper as support material on <i>in vitro</i> shoot growth and multiplication in rose grown on liquid medium	64
Table 3.9	Effect of different vessel's type with use of cotton as support material on <i>in vitro</i> shoot growth and multiplication in rose grown on liquid medium	65
Table 3.10	Effect of different gelling agents on <i>in vitro</i> shoot growth and multiplication in rose, grown on medium	66
Table 3.11	Effect of LSE on <i>in vitro</i> shoot growth and multiplication in rose, grown on semi-solid medium	67
Table 3.12	Effect of liquid medium on in vitro rooting in rose	68
Table 3.13	Effect of different polyamines concentration on <i>in vitro</i> growth of rose micropropagation	68
Table 4.1	Effect of different vessel's types on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication grown on semi-solid medium	89
Table 4.2	Effect of different vessel's types with use of glass marble as support material on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication grown on liquid medium	90
Table 4.3	Effect of different vessel's types with use of water balls as support material on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication grown on liquid medium	91
Table 4.4	Effect of different vessel's types with use of tissue papers as support material on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication grown on liquid medium	92
Table 4.5	Effect of different vessel's types with use of cotton as support material on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication grown on liquid medium	93
Table 4.6	Effect of different gelling agents on water content and other growth parameters in rose during <i>in vitro</i> shoot multiplication	94

Table No.	Name of Tables	Page No.
Table 4.7	Percent water content and other growth parameters in rose grown under LSE	95
Table 4.8	Percent water content and other growth parameters in rose grown under semi-solid medium and CO ₂ enriched conditions	96
Table 4.9	Percent water content and other growth parameters in rose grown under liquid medium and CO_2 enriched conditions	97
Table 4.10	Carbonic anhydrase enzyme activity in the leaves of rose during <i>in vitro</i> growth on semi-solid and liquid medium, compared with leaves obtained from field grown plants	98
Table 4.11	Carbonic anhydrase enzyme activity in the leaves of rose during <i>in vitro</i> growth CO ₂ enrichment on semi-solid and liquid medium, compared with leaves obtained from field grown plants	98
Table 4.12	Effect of different polyamines concentration on <i>in vitro</i> growth of rose in biomass accumulation during micropropagation	99
Table 5.1	Effect of different vessel's types on semi-solid medium and their biochemical parameters of rose during multiplication stages	112
Table 5.2	Effect of different vessel's types with glass marble as support material on liquid medium and their biochemical parameters of rose during multiplication stages	113
Table 5.3	Effect of different vessel's types with water balls as support material on liquid medium and their biochemical parameters of rose during multiplication stages	114
Table 5.4	Effect of different vessel's types with tissue paper as support material on liquid medium and their biochemical parameters of rose during multiplication stages	115
Table 5.5	Effect of different vessel's types with cotton as support material on liquid medium and their biochemical parameters of rose during multiplication stages	116
Table 5.6	Effect of different gelling agents and their biochemical parameters of rose during multiplication stages	117

Table No.	Name of Tables	Page No.
Table 5.7	Effect of CO ₂ enrichment on semi-solid medium and their biochemical parameters of rose during multiplication stages	118
Table 5.8	Effect of CO ₂ enrichment on liquid medium and their biochemical parameters of rose during multiplication stages	119
Table 5.9	Effect of different liquid seaweed extract and their biochemical parameters of rose during multiplication stages	120
Table 5.10	Effect of different polyamines concentration on biochemical parameters in rose micropropagules grown under <i>in vitro</i> conditions	121
Table 6.1	List of random decamer primers used for screening the PCR amplification of total genomic DNA in Rose	141
Table 6.2	Concentration of PCR mixture for RAPD	141

List of Figures

Figure No.	Name of Figures	Page No.
Figure 1.1	Diagram illustrating the various stages of micropropagation	29
Figure 2.1	Establishment of rose tissue culture in laboratory	36
Figure 3.1	Effect of different culture vessels on <i>in vitro</i> growth of Rose on liquid medium	69
Figure 3.2	Effect of various supporting materials on <i>in vitro</i> growth of Rose on liquid medium	70-71
Figure 3.3	Effect of different culture vessels on <i>in vitro</i> growth of Rose on semi-solid medium	72
Figure 3.4	Temporary immersion system designed in plant biotechnology laboratory to study <i>in vitro</i> growth of Rose	72
Figure 3.5	Effect of different gelling agents on <i>in vitro</i> plant growth during the multiplication stage of Rose	73
Figure 3.6	Effect of CO ₂ enrichment on shoot multiplication of Rose plant grown on sucrose free semi-solid medium (SFSM) and sucrose containing semi-solid medium (SCSM)	74
Figure 3.7	Effect of CO ₂ enrichment on shoot multiplication of Rose plant grown on sucrose free liquid medium (SFLM) and sucrose containing liquid medium (SCLM)	75
Figure 3.8	Effect of different Liquid Seaweed Extract (LSE) with different concentration were used on <i>in vitro</i> growth at multiplication stage of Rose	76-77
Figure 3.9	Effect of semi-solid and liquid medium on <i>in vitro</i> rooting of Rose	78
Figure 3.10	Acclimatization of in vitro grown Rose plant	78

Figure No.	Name of Figures	Page No.
Figure 3.11	Transverse section through shoot, root and leaf of Rose during <i>in vitro</i> growth (multiplication stages) on semi-solid and liquid medium	79
Figure 3.12	SEM analysis with magnification of 1.2 K X of leaf adaxial surface of <i>in vitro</i> gown Rose plant in (A) semi-solid medium and (B) liquid medium	80
Figure 3.13	SEM analysis with magnification of leaf adaxial surface of in vitro gown Rose plant (A) <i>in vitro</i> grown plant in 2.0 K X, (B) <i>in vitro</i> grown CO ₂ enrichment plant in 4.0 K X, (C) field grown plant in 250 X and (D) field grown plant in 360 X	80
Figure 5.1	Effect of different gelling agents and cultural vessels in peroxidase (POD) activity of micropropagated Rose during the multiplication stages of plantlets	122
Figure 5.2	Effect of different culture vessels and support materials in peroxidase (POD) activity of micropropagated Rose during the multiplication stages of plantlets	123-124
Figure 5.3	Effects of CO ₂ enrichment with SS medium and LM in peroxidase (POD) activity of micropropagated Rose during the multiplication stages of plantlets	125
Figure 5.4	Effect of different gelling agents and cultural vessels in chlorophyll activity of micropropagated Rose during multiplication stage of plantlet	126
Figure 5.5	Chlorophyll activity of micropropagated Rose during the multiplication stages of plantlets under CO ₂ enrichment condition on semi-solid medium	127
Figure 5.6	Chlorophyll activity of micropropagated Rose during the multiplication stages of plantlets under CO_2 enrichment condition on liquid medium	128
Figure 5.7	Effect of different culture vessels and support materials in chlorophyll activity of micropropagated Rose during multiplication stage of plantlet	129-130
Figure 5.8	Chlorophyll activity of micropropagated Rose during multiplication stage of plantlet grown under different LSE concentration	131
Figure 5.9	Effect of polyamines (PAs) on chlorophyll contents in rose micropropagules grown under <i>in vitro</i> conditions	132

Figure No.	Name of Figures	Page No.
Figure 5.10	Effect of polyamine (PAs) on antioxidant enzyme like peroxidase and superoxide dismutase in rose micropropagules grown under <i>in vitro</i> conditions	133
Figure 6.1	Molecular evaluation of genetic fidelity in <i>in vitro</i> grown Rose during different growth condition	142-143
Figure 6.2	Molecular evaluation of genetic fidelity using RAPD primers in Rose grown under <i>in vitro</i> CO ₂ enrichment condition	144-145
Figure 8.1	Summary of comparative analysis of different morphological and biochemical parameters: Effect of different growth condition on Rose during <i>in vitro</i> growth	178-179

List of Abbreviation

%	: Percent
°C	: Degree of Celsius
CO ₂	: Carbon dioxide
PA	: Polyamines
Spd	: Spermidine
Spm	: Spermine
Cad	: Cadaverine
Put	: Putrescine
CA	: Carbonic anhydrase
POD	: Peroxidase
CAT	: Catalase
SOD	: Super oxide dismutase
ROS	: Reactive oxygen species
SS	: Semi-solid
LM	: Liquid medium
RAPD	: Random Amplified Polymorphic DNA
TIS	: Temporary immersion system
RITA	: Recipient for Automated Temporary Immersion system
CIS	: Continuous Integrated System
BIT	: Bubble Induced Turbulence
MATIS	: Modular Automated Tissue Engineering System
SETIS	: Single-Use Environmental Tubular Immobilized System
TIBS	: Two-Interconnected Bioreactor System
CIB	: Cell Immobilization Bioreactor
IBA	: Indole-3-Butyric Acid
NAA	: Naphthalene Acetic Acid
BAP	: 6-Benzylaminopurine
Kin	: Kinetin
2iP	: N6-(2-Isopentenyl) Adenine
ABA	: Abscisic Acid

IAA	: Indole-3-Acetic Acid
IPA	: N6-Isopentenyladenine
iPR	: N6-(Δ 2-Isopentenyl) Adenosine
tZR	: Trans-Zeatin Riboside
tΖ	: Trans-Zeatin
GA3	: Gibberellic Acid
LSE	: Liquid seaweed extract
PGRs	: Plant growth regulators
mm	: millimetres
mМ	: Millimolar
SCSM	: Sucrose containing semi-solid medium
SCLM	: Sucrose containing liquid medium
SFSM	: Sucrose free semi-solid medium
SFLM	: Sucrose free liquid medium
cm	: Centimetres
SEM	: Scanning electron microscope
gm	: Gram
TI	: Temporary immersion
CD	: Critical difference
CV	: Coefficient variance
SEM	: Standard error mean
mg	: Milligram
FW	: Fresh weight
fwt	: Fresh weight tissue
DNA	: Deoxyribonucleic Acid
ml	: Millilitre
Μ	: Molar
Tris-Cl	: Tris (Tris(hydroxymethyl)aminomethane) Hydrochloride
EDTA	: Ethylenediaminetetraacetic Acid
ТЕ	: Tris-EDTA
SDS	: Sodium Dodecyl Sulphate
RNA	: Ribonucleic Acid
UV	: Ultraviolet

OD	:	Optical Density
PCR	:	Polymerase Chain Reaction
Tm	:	Melting Temperature
ng	:	Nanogram
μΜ	:	Micromolar
pmol	:	Picomole