Title	Content	
	Declaration by the Candidate	Ι
	Certificate of Supervisor	Π
	Acknowledgement	Ш
	Contents	VI
	List of Figures	XI
	List of Tables	XII
	Abstract	XVI
Chapter 1	Introduction	1-5
	1.1 History of groundnut	1
	1.2 Economic importance of groundnut	1
	1.3 Importance of groundnut in food and feed	2
	1.4 Vitamin A: an Essential Micronutrient	3
	1.5 Vitamin A Deficiency: Causes and Effects	3
	1.6 Practical Utility of Research Problem	4
	1.7 Objectives	5
Chapter 2	Review of Literature	7-26
	2.1 Bioavailability of Vitamin A	7
	2.2 Vitamin A Recommended Dietary Allowance	8
	(RDA)	
	2.3 Carotenoids: Major Source of Vitamin A	9
	2.4 Biosynthesis of Carotenoids	9
	2.5 The MEP Pathway	9
	2.5.1 Carotenoid Biosynthesis Pathway	10
	2.5.2 Turnover and Degradation of Carotenoids	11
	2.5.3 Regulation of Carotenoid Flux: Role of Rate-	12
	Limiting Enzymes	
	2.6 CRISPR-Mediated Gene Editing	15
	2.7 Genetic improvement of groundnut through transgenesis	21

CONTENT

Title	Content	
Chapter 3	Materials and Methods	27-58
	3.1 Carotenoids Extraction and Estimation	27
	3.1.1 Preparation of Carotenoids Standards and	27
	Standard Curve	
	3.1.2 Carotenoids Extraction	27
	3.1.3 High-Performance Liquid Chromatography	27
	(HPLC)	
	3.2 Glassware, Plasticware and Accessories	28
	3.2.1 Chemicals	28
	3.2.2 Cleaning and Sterilization of Glassware and	28
	Accessories	
	3.2.3 Sterilization of Equipment	28
	3.2.4 Sterilization of laminar airflow cabinets	29
	3.2.5 Sterilization of materials used in the	29
	transformation work before and after	
	3.2.6 Sterilization of chemicals and growth	29
	regulators	
	3.3 Tissue Culture Media	29
	3.3.1 Preparation of Stock Solutions of MS Salts and	30
	PGR	
	3.4 Growth regulator stocks	31
	3.4.1 BAP stock solution (1 mg/ml)	31
	3.4.2 IBA stock solution (1 mg/ml)	32
	3.4.3 GA stock solution (1 mg/ml)	32
	3.5 Antibiotic stocks	32
	3.5.1 Kanamycin stock solution (100 mg/ml)	32
	3.5.2 Cefotaxime stock solution (100 mg/ml)	32
	3.6 Preparation of Plant Tissue Culture Medium	32
	3.6.1 Cultural Conditions	33
	3.6.2 Preparation of media bottles/plates/tubes	33
	3.6.3 Luria Bertani (LB) Medium	34

Title	Content	Page No
	3.7 Optimization of protocol for <i>in vitro</i> regeneration of	34
	Groundnut GGJ 20	
	3.7.1 Multiplication and elongation of shoots	34
	3.7.2 Root regeneration from in vitro developed	35
	shoots and development of complete plantlets	
	3.7.3 Hardening and acclimatization of in vitro	35
	Regenerated plantlets	
	3.8 Guide RNA designing and synthesis	36
	3.9 Plasmid isolation	37
	3.10 Gel purification of the digested product	38
	3.10.1 PCR product purification	38
	3.10.2 NEBuilder® Assembly of CRISPR vectors	39
	using ssDNA oligos	
	3.11 Escherichia coli growth Condition	39
	3.11.1 Competent cell preparation and	40
	transformation of <i>E. coli</i> Strain DH α and	
	Agrobacterium Strain 4404	
	3.12 E. coli transformation Materials	40
	3.13 Agrobacterium competent cell preparation	41
	3.13.1 Electroporation	42
	3.14 Colony PCR	43
	3.15 Genetic transformation in Groundnut GJG20	43
	3.15.1 Development of carotene edited plantlets	43
	from cotyledon explants	
	3.15.2 Bacterial strain and plasmid	43
	3.15.3 Maintenance and growth of Agrobacterium	44
	cultures	
	3.15.4 Pre-culturing of cotyledon explants	44
	3.15.5 Preparation of Agrobacterium culture for co-	44
	cultivation	
	3.15.6 Co-culturing	45

Title	Content	
	3.15.7 Transfer of cotyledon explants on the	45
	selective shoot regeneration medium after co-	
	cultivation	
	3.15.8 Multiplication, elongation and selection of	45
	carotene transgenic shoots	
	3.15.9 Development of roots in carotene edited	46
	shoots of Groundnut GJG20	
	3.15.10 Hardening and acclimatization of in vitro	46
	developed carotene edited plantlets	
	3.16 Molecular Analysis of Carotene edited Plantlets of	46
	Groundnut GJG20	
	3.16.1 Isolation and purification of genomic DNA	46
	from the carotene transformed and non-transformed	
	(control) plantlets	
	3.16.2 Confirmation for the integration of CRISPR-	48
	Cas9-gRNA construct	
	3.16.3 Gel electrophoresis and visualization of	49
	amplified products	
	3.17 Nucleotide sequencing and Bio-informatics	50
	analysis	
	3.18 Observation recorded	50
	3.19 Statistical analysis	51
Chapter 4	Results and Discussion	59-84
	4.1 In vitro plant regeneration studies in Groundnut	60
	[Arachis hypogaea (L)]	
	4.1.1 Optimization of protocol for regeneration	60
	4.1.2 Effect of BAP on shoot regeneration from de-	61
	embryonated cotyledons explant	
	4.1.3Effect of BAP and GA on Shoot multiplication	61
	and elongation	

Title	Content		
	4.1.4 Effect of different concentrations of NAA on	62	
	root initiation from in vitro developed shoots		
	4.1.5 Hardening of regenerated plantlets of	62	
	Groundnut		
4.2 Genetic transformation studies in Groundnut			
	4.2.1 p201B CRISPR/Cas9 vector	63	
	4.2.2 Isolation of plasmid p201B	63	
	4.2.3 NEBuilder® Assembly of CRISPR vectors	63	
	using ssDNA oligos		
	4.4 E. coli and Agrobacterium transformation and	64	
	conformation by colony PCR		
	4.5 Development of Beta Carotene edited plants from	64	
	de-embryonated cotyledon explants		
	4.5.1 Using de-embryonated cotyledons as explants	64	
	4.6 Molecular analysis of putative transformed plantlets	66	
	of Groundnut		
	4.6.1 Confirmation of Cas9-gRNA integration into	66	
	the transformed plants by PCR		
	4.6.2Nucleotide sequencing for gene specific PCR	67	
	products of transformed and control plants		
	4.6.3 Bioinformatic analysis for the detection of		
	targeted mutation induced in the lycopene-ε-cyclase	68	
	gene		
	4.7 Estimation of Carotenoids in peanut seeds	69	
Chapter 5	Summary and Conclusion	85-86	
	Bibliography	87-104	
Appendix A	Plagiarism Report		
Appendix B	Publications		

Figure No.	Name of the Figures	Page No.	
Figure 2.1	Representation of steps/enzymes involved in the	25	
	formation of different forms of vitamin A in the body		
Figure 2.2	Carotenoid biosynthesis pathway	26	
Figure 4.1	Co-culture of de-embryonated cotyledons and regeneration	72	
Figure 4.2	Shoot buds (developed from de-embryonated cotyledons) in hygromycin selection media	73	
Figure 4.3	Shoot buds (developed from de-embryonated cotyledons) in hygromycin selection media	74	
Figure 4.4	Individual shoots in hygromycin selection	75	
Figure 4.5	Individual shoots in rooting media	76	
Figure 4.6	Hygromycin resistant individual plants (developed from de-embryonated cotyledons as explant) hardened		
Figure 4.7	in glass house. Restriction enzymes SpeI to digest p201b vector		
Figure 4.8	p201B vector cassette	78 78	
Figure 4.9	Colony PCR analysis for presence of Cas9	79	
Figure 4.10	PCR analysis Beta Carotene transformed Groundnut (T0) plants	80	
Figure 4.11	Alignment of DNA sequences obtained after sequencing result of T0 plants of Groundnut	81	
Figure 4.12	The sequencing chromatograms of LCYE gene in T0 generation	82	
Figure 4.13	HPLC quantification of b-carotene 83		
Figure 4.14	Visual observation of the altered amount of b-carotene in the groundnut cotyledon	84	

List of Figures

List	of	Tab	les

Table No.	Name of Tables	Page No.
Table 2.1	Vitamin A RDA as per ICMR (2010) report.	24
Table 2.2	Number of reports on genetic transformation in groundnut	
Table 3.1	Different combinations and concentrations of BAP used in	52
	MS medium for shoot regeneration from De-embryonated	
	cotyledons ex plant of GGJ20	
Table 3.2	Different combinations and concentrations of BAP and	52
	GA3 used in MS medium for shoot regeneration from De	
	embryonated cotyledon explant of GGJ-20	
Table 3.3	Composition of root regeneration media having various	53
	concentrations of NAA	
Table 3.4	Primer sequence of LCYE gene	53
Table 3.5	gRNA sequence information	53
Table 3.6	Chemical composition of Luria Bertani medium	54
Table 3.7	List of plasmid isolation alkaline stock solutions	54
Table 3.8	TAE buffer stock solution preparation	54
Table 3.9	Reaction set up for restriction enzyme digestion of binary	55
	vector p201B	
Table 3.10	NEBuilder cloning reaction	55
Table 3.11	PCR conditions for NEBuilder cloning reaction	55
Table 3.12	Reaction mixture for colony PCR	56
Table 3.13	Colony PCR reaction condition	56
Table 3.14	Primers sequences of Cas9 and U6 promoter to conform	57
	Transformed groundnut plants	
Table 3.15	PCR reaction mixture for amplification of Cas9 and U6	57
	promoter	
Table 3.16	PCR reaction conditions for amplification of Cas9 and U6	58
	promoter	

Table No.	Name of Tables	Page No.
Table 4.1	Different combinations and concentrations of BAP used in	70
	MS medium for shoot regeneration from De-embryonated	
	cotyledons	
Table 4.2	Different combinations and concentrations of BAP and	70
	GA3 used in MS	
Table 4.3	Effect of various concentrations of NAA on root	71
	regeneration from multiple shoot explants in Groundnut	
Table 4.4	Details of the co-culture and beta Carotene editing plants	71
	developed from de-embryonated cotyledons cv. GJG20	
	using the p201B gene construct	

°C Degree Celsius : Microgram μg : μl Microliter : BAP 6-Benzyl aminopurine : bp **Base** - Pairs : CaMV Cauliflower Mosaic Virus : Cas **CRISPR-**associated : CD Critical difference • **Clustered Regularly Interspaced Short** CRISPR : **Palindromic Repeats** Cultivar CV : DNA : Deoxyribonucleic acid dNTPs Deoxynucleotide Triphosphate : Double -- stranded breaks **DSBs** : DW : Distilled Water **EDTA** Ethylene Diamine Tetra Acetic Acid : et al. **Co-Workers** : EtBr : Ethidium Bromide FAD : Fatty Acid Desaturase FAO : Food and Agricultural Organization Figure Fig. : **gRNA** Guide RNA : Hcl Hydrochloric acid : HDR Homology Directed Repair : Mercuric chloride HgCl₂ : hr Hour : i.e., : That is

Insertion and Deletion

:

List of Abbreviation

Percent

:

%

InDel

Kb	: Kilo-Bases
LAF	: Laminar Air Flow
LB	: Left-border of T-DNA
LB	: Luria Bertani
mg/l	: Milligram per liter
min	: Minute
mm	: Millimeter
MS	: Murashige and Skoog medium
NAA	: Naphthalene acetic acid
NaOH	: Sodium Hydroxide
NCBI	: National Centre for Biotechnology information
ng	: Nanogram
NHEJ	: Non-Homologous End Joining
nt	: Nucleotide
NTC	: Non -transformed Callus
NTP	: Non- transformed plantlet
OD	: Optical Activity
Ori	: Origin of replication
PAM	: Protospacer Adjacent Motif
PCR	: Polymerase chain reaction
PEG	: Polyethylene Adjacent Motif
PGR	: Plant Growth Regulator
рН	: Potential of Hydrogen
ppm	: Parts per millions
RB	: Right border of T-DNA
RGEN	: RNA guided engineered nuclease
S.E.	: Standard error
sec	: Second
TAE	: Tris Acetate EDTA
Tm	: Melting Temperature
Ubi	: Ubiquitin promoter