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Chapter 3 

Transform Domain Watermarking 

 

Transform Domain Video Watermarking 

The transform domain approach for video watermarking operates on the frequency 

representation of an image, contrasting with spatial domain techniques. Algorithms based on 

DCT and DWT are the most commonly used methods in this domain. These techniques 

transform an image from its spatial domain into the frequency domain, organizing frequency 

coefficients based on human perception. The coefficients are then modulated to embed 

watermark data, following three main steps: 

1. Forward Transformation: Converts the spatial domain image into the frequency 

domain, producing frequency coefficients. 

2. Coefficient Modification: Alters these coefficients based on the watermark 

information. 

3. Inverse Transformation: Converts the modified frequency domain representation 

back into the spatial domain. 

 

3.1 Discrete Cosine Transform (DCT) 

The DCT converts a 2D spatial domain image into its frequency domain equivalent. It 

maintains the size of the transformed image equal to the original and positions the DC 

coefficient, representing low frequencies, in the top-left corner. The remaining coefficients, 

termed AC coefficients, increase in frequency along a zigzag path. The DC coefficient, always 

an integer, ranges from -1024 to 1023, while AC coefficients may be integers or non-integers. 

DCT's ability to distinguish between frequency components makes it an effective tool for 

watermarking. Most critical information is found in low-frequency components, while mid-

frequency components are ideal for watermarking due to their balance of robustness and 

imperceptibility. 

The ability of DCT to differentiate frequency components effectively makes it a highly useful 

tool for watermarking applications. The mathematical representations for two-dimensional 

DCT and its inverse are provided in Equations 1 and 2, respectively. 

𝐅(𝐮, 𝐯) =  𝛂(𝐮)𝛂(𝐯) ∑

𝐌−𝟏

𝐱=𝟎

∑ 𝐟(𝐱, 𝐲) 𝐜𝐨𝐬[
(𝟐𝐱 + 𝟏)𝐮𝛑

𝟐𝐌
]

𝐍−𝟏

𝐲=𝟎

𝐜𝐨𝐬[
(𝟐𝐲 + 𝟏)𝐯𝛑

𝟐𝐍
]         − −(𝟑. 𝟏) 
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Where α(u) = √1/M     for u=0; 

              α(u) = √2/M     for u=1,2,3,…..M-1; 

           α(v) = √1/N       for v=0; 

              α(v) = √2/N      for v=1,2,3,…..N-1; 

𝐟(𝐱, 𝐲) = ∑

𝐌−𝟏

𝐮=𝟎

∑  𝛂(𝐮)𝛂(𝐯)𝐅(𝐮, 𝐯) 𝐜𝐨𝐬[
(𝟐𝐱 + 𝟏)𝐮𝛑

𝟐𝐌
] 

𝐍−𝟏

𝐯=𝟎

𝐜𝐨𝐬[
(𝟐𝐲 + 𝟏)𝐯𝛑

𝟐𝐍
]          − −(𝟑. 𝟐) 

Where x = 0, 1, 2,……..M-1,  y = 0,1,2,……..N-1 

Figure 3.1 (a) DCT frequency distribution. 

 

(a)                                                                   (b) 

Figure 3.1: (a) DCT based classification of Frequency (b) Values of Quantization given in the 

JPEG compression Scheme 

Here FL = Components with low frequency, FM = Components having mid-level 

Frequency and FH = Components having high-level frequency.  

 

3.1.1   Embedding Process 

The following steps outline the procedure for embedding a watermark into video frames 

using this method: 

1. Frame Extraction: The original video is divided into individual frames. 

2. Face Detection: Faces within each frame are detected and localized using algorithms 

such as Viola-Jones or advanced deep learning-based face detectors. 

3. Color Space Transformation: The frames undergo a conversion from the RGB color 

space to the YCbCr color space. 

4. Frame Blocking: The luminance (Y) component is divided into non-overlapping 

blocks. 
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5. DCT Application: Discrete Cosine Transform (DCT) is applied to each block to 

convert spatial data into frequency components. 

6. Frequency Component Modification: Specific mid-frequency diagonal components, 

such as (5, 2) and (4, 3), are adjusted based on the watermark properties: 

o For black watermark pixels, ensure (5, 2) > (4, 3). If not, swap their values. 

o For white watermark pixels, ensure (5, 2) < (4, 3). If not, swap their values. 

o Ensure the difference between these two frequency components exceeds the 

gain factor. If not, adjust the values by adding or subtracting the gain factor to 

achieve the desired difference. 

7. Inverse DCT: Apply inverse DCT to the modified blocks to reconstruct the spatial 

data. 

8. Color Space Reversion: Convert the modified YCbCr data back to the RGB color 

space to obtain the updated frame. 

9. Face Image Reinsertion: Replace the original face region within the frame with the 

watermarked face image. 

10. Frame Processing Iteration: Repeat steps 2 to 9 for each subsequent frame until all 

frames in the video are processed. 

11. Video Reconstruction: Combine all the modified frames to reconstruct the 

watermarked video. 

This step-by-step process ensures precise embedding of the watermark while maintaining the 

video’s overall perceptual quality. 

 

 

(a) 

Frame-1 Frame-2 Frame-3 Frame-4 Frame-5 
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(b) 

Figure 3.2: DCT based Watermarking with K=100 and BS=8 (a) 5 frames of video (b) 

Watermarked Frames 

 

3.1.2   Extraction Process  

1. Divide the watermarked video into frames, Find the faces and convert the color space 

to YCbCr. 

2. Apply DCT on the Y frame's blocks and extract mid-frequency coefficients. 

3. Compare coefficients to determine the watermark's binary values. 

4. Repeat for all frames to recover the watermark. 

Figure 3.3: Recovered Messages 

3.1.3   Results 

Alpha=10 Alpha=30 Alpha=50 Alpha=70 Alpha=90 

     

43.6481 39.6156 36.3418 34.1563 32.467 

(a) 

 

Watermarked:

1 

Watermarked:

2 

Watermarked:

3 

Watermarked:

4 

Watermarked:

5 

     

Recovered:1 Recovered:2 Recovered:3 Recovered:4 Recovered:5 
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Alpha=10 Alpha=30 Alpha=50 Alpha=70 Alpha=90 

     

0.9814 0.9839 0.9839 0.9839 0.9839 

(b) 

Figure 3.4: With Various values of K (a) Frame 1 - Watermarked (b) Messages at the receiver 

end 

 

 

 

 

 

 

 

 

 

Table 3.1: DCT based watermarking with K=100 & BS=8 

Alpha PSNR (db) MSE Correlation 

10 43.6481 2.8072 0.9814 

20 41.5132 4.5894 0.9839 

30 39.6156 7.1042 0.9839 

40 37.8874 10.5765 0.9839 

50 36.3418 15.0973 0.9839 

60 35.1874 19.6945 0.9839 

70 34.1563 24.9716 0.9839 

80 33.2444 30.8064 0.9839 

90 32.467 36.8455 0.9839 

100 31.8645 42.3286 0.9839 

Table 3.2: DCT based watermarking with various values of K 

 

3.1.4 Observations and Results 

Frame  

No. 

PSNR (db) MSE Correlation 

1 29.1135 36.8455 0.9839 

2 29.3435 35.235 0.9839 

3 29.4035 36.0056 0.9839 

4 28.3435 37.1340 0.9839 

5 29.5221 35.8411 0.9839 
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1. Increasing the gain factor reduces perceptibility but enhances robustness. 

2. Frames with a PSNR above 28 dB are visually acceptable, while correlation values 

above 0.50 ensure identifiable messages. 

3. The method is robust against some attacks (e.g., color reduction, histogram 

equalization) but vulnerable to others (e.g., average filtering, rotation). 

 

3.1.5   Observations 

Following are the observations after successfully implementing both embedding & extraction 

algorithms, assuming K=100 for analysis in case of visual metrices: 

1. As the gain factor increases, the perceptibility of the method decreases. 

2. The robustness of the method improves with an increase in K. 

3. When the PSNR value exceeds 28 dB, the frames appear visually acceptable. 

Additionally, if the correlation value exceeds 0.50, the embedded message is 

distinguishable. 

4. The method shows limited robustness against attacks such as average filtering, 

median filtering, and image rotation. 

5. The method demonstrates partial robustness against attacks like Gaussian low-pass 

filtering, compression, Gaussian noise, salt-and-pepper noise, and speckle noise. 

6. The method is highly robust against , histogram equalization, , linear camera motion, 

color reduction, cropping, and high-pass filtering attacks. 

 

3.1.6 Comparison - Correlation based watermarking Method: 

 For the same gain factor, there is a significant difference in perceptibility, while the variation 

in robustness is minimal. 

 Spackle noise and Compression attacks result in lower robustness, whereas higher robustness 

is observed against Gaussian low-pass filtering, linear camera motion, and attack such as high-

pass filtering 

3.2 DWT in Image Processing 

3.2.1 Introduction 

The wavelet transform is useful in almost all image processing applications, including 

compression, signal analysis, digital watermarking, and general signal processing. These 

applications have become increasingly effective and practical over the last few decades due to 

the use of wavelet transforms. 
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Unlike periodic waves, which maintain consistent oscillations over time or space, wavelets are 

localized waves that concentrate their energy within specific time or spatial regions. This 

characteristic makes wavelets highly effective for signal analysis. The Discrete Wavelet 

Transform (DWT) works by convolving signals, either 1D or 2D, with wavelets across various 

time scales and positions. This approach is computationally efficient, requires fewer resources, 

and is straightforward to implement. 

DWT operates on the principle of sub-band coding, where signals are subjected to filtering and 

sub-sampling. Filtering determines the resolution by retaining specific amounts of signal 

information, while sub-sampling adjusts the signal's scale. Using a combination of low-pass 

and high-pass filters, DWT performs multi-level decomposition. At each decomposition level, 

the frequency resolution is doubled, reducing frequency uncertainty by half while halving the 

time resolution. For instance, a signal with 500 samples will be reduced to 250 samples after 

the first decomposition level. 

One of the key strengths of DWT is its ability to balance time and frequency resolutions. It 

provides high time resolution for higher frequencies and enhanced frequency resolution for 

lower frequencies, making it an adaptable and versatile tool for signal processing. 

 

Understanding the DWT 

For a one-dimensional signal, the process involves passing the signal through both a low-pass 

filter (capturing low-frequency components, or "information") and a high-pass filter (capturing 

high-frequency components, or "edges"). The low-frequency part undergoes further 

decomposition to extract additional low and high-frequency components, a process that can 

continue for multiple levels based on the application requirements. Commonly, applications 

like compression or watermarking use up to five decomposition levels. 

The original signal can be reconstructed from its DWT coefficients using the Inverse Discrete 

Wavelet Transform (IDWT). 

Figure 3.7 illustrates the basic filtering and decomposition process. Low-frequency 

components typically carry the most significant information in a signal, while high-frequency 

components are less critical. For example, in human speech, removing high-frequency 

components may change the sound's clarity but still retain intelligibility. Removing low-

frequency components, however, can render the speech incomprehensible. 
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Figure 3.5: Filtering or decomposition process at its most basic level 

 

Approximations and Details in Wavelet Analysis 

Wavelet analysis focuses on two key elements: 

1. Approximations – High-scale, low-frequency components. 

2. Details – Low-scale, high-frequency components. 

The decomposition process applies a signal to low-pass and high-pass filters, producing outputs 

twice the size of the input. To maintain consistency, the outputs are down-sampled by a factor 

of 2, reducing each output's size to match the original signal. This concept is depicted in Figure 

3.8. 

 

Figure 3.6: Analysis with down sampling 

 

Mathematically, the equations for low-pass and high-pass filters are represented as: 

𝐇 (𝐰) =  ∑ 𝐡k
𝐤

 𝐞−𝐣𝐤𝐰                                                                                                 − − − −(𝟑. 𝟑) 

𝐇 (𝐰) =  ∑ 𝐡k
𝐤

 𝐞−𝐣𝐤𝐰                                                                                                − − − −(𝟑. 𝟒) 
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These equations determine how signals are divided into successive approximation components 

through iterative decomposition, forming a wavelet decomposition tree. Figure 3.9 illustrates 

this multi-level decomposition. 

 

Figure 3.7: Multiple-level decomposition or analysis 

2D DWT for Images 

For a two-dimensional image F(x,y), the DWT and IDWT processes are applied first along the 

x-dimension and then along the y-dimension. This decomposition results in a pyramidal 

representation of the image, dividing it into four components: 

1. Approximation Component – Captures the core image structure. 

2. Horizontal Detail Component – Contains horizontal edge information. 

3. Vertical Detail Component – Contains vertical edge information. 

4. Diagonal Detail Component – Contains diagonal edge information. 

This method of decomposition is highly effective for various image-processing applications, 

providing robust capabilities for analysis and reconstruction. 

 

Significance of Low-Frequency and High-Frequency Components 

In the realm of wavelet analysis, low-frequency components, also known as approximations, 

hold the majority of the signal's essential information. These components are crucial for tasks 

like image reconstruction and noise reduction. High-frequency components, or details, 

typically represent finer details such as edges and noise. While they are less critical for 

representing the primary structure of the signal, they are essential for enhancing clarity and 

emphasizing boundaries in image processing tasks. 

For instance, in audio signals, removing high-frequency components may alter the tonal quality 

but still leave the main message understandable. Conversely, if low-frequency components are 

removed, the result will lack coherence, rendering the message incomprehensible. This 



Machine Learning and Frequency Domain Approach for Achieving Dual Security of Important 

Information 

 

Page 34 of 100 
 

principle applies to images as well, where the low-frequency approximations define the broader 

structure, and the high-frequency details contribute to the finer textures and edges. 

 

Multi-Level Decomposition in DWT 

One of the powerful aspects of DWT is its ability to perform multi-level decomposition. By 

iteratively applying the wavelet transform to the approximation components, an image or signal 

can be decomposed into multiple levels, with each level offering finer resolution. 

This process generates a hierarchical structure known as the wavelet decomposition tree, as 

shown in Figure 3.9. At each successive level, the signal is split into four components: 

1. LL (Approximation) – The low-frequency component containing the majority of the 

image information. 

2. LH (Horizontal Detail) – Captures horizontal edges in the image. 

3. HL (Vertical Detail) – Captures vertical edges in the image. 

4. HH (Diagonal Detail) – Represents diagonal edges and finer textures. 

 

(a) 

 

(b) 

Figure 3.8: Basic decomposition steps for images 

 

The decomposition process effectively isolates the frequency content at different scales, 

enabling targeted analysis and manipulation. For instance, compression algorithms can 



Image and Video Watermarking 

 

Page 35 of 100 
 

prioritize the LL component while selectively discarding or compressing the detail components 

(LH, HL, HH) to reduce file size. Similarly, watermarking applications embed hidden data in 

these detail components without significantly altering the image's visual quality. 

 

Reconstruction with IDWT 

The Inverse Discrete Wavelet Transform (IDWT) reconstructs the original signal or image 

from its decomposed components. By combining the approximation and detail coefficients 

from each level in reverse order, the original data can be accurately restored. 

This reconstruction relies on the perfect reconstruction property of wavelet transforms, 

ensuring no loss of information during the decomposition and synthesis processes. This makes 

wavelets highly effective for lossless compression and signal recovery applications. 

 

3.2.2 Applications of DWT 

The DWT has found extensive applications in various fields, including: 

1. Image Compression – The JPEG2000 standard, for instance, employs wavelet-based 

compression techniques to achieve high compression ratios without significant loss in 

image quality. 

2. Digital Watermarking – By embedding watermark data into high-frequency 

components, wavelet-based watermarking techniques ensure robustness against attacks 

like compression and noise addition. 

3. Noise Reduction – The ability to isolate noise in high-frequency components allows 

DWT to be used in denoising signals and images while preserving essential 

information. 

4. Feature Extraction – In machine learning and pattern recognition, DWT helps extract 

features by isolating different frequency bands, aiding in classification tasks. 

5. Signal Analysis – DWT's multi-resolution property enables the analysis of non-

stationary signals, making it ideal for applications in audio processing, biomedical 

signal analysis, and more. 

 

3.2.3. Advantages of DWT 

1. Multi-Resolution Analysis – DWT allows simultaneous time and frequency domain 

analysis, making it versatile for signals with varying frequency content over time. 

2. Efficient Computation – The sub-band coding approach and down-sampling reduce 

computational complexity, making DWT suitable for real-time applications. 
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3. Compact Representation – DWT provides a sparse representation of signals, reducing 

storage requirements while preserving critical information. 

4. Scalability – The hierarchical decomposition facilitates analysis at different 

resolutions, enabling scalability in applications like image compression. 

  3.2.4 Embedding Process 

The process of video watermarking using Discrete Wavelet Transform (DWT) is outlined as 

follows: 

1. The original video is divided into individual frames. 

2. Face detection is performed within each frame, utilizing algorithms such as Viola-

Jones or deep learning-based methods to locate and identify faces. 

3. Two random sequences are generated, referred to as pn_sequence_one and 

pn_sequence_zero. 

4. The color space of the frame is converted from RGB to YCbCr format. 

5. The Discrete Wavelet Transform (DWT) is applied to the Y channel, and the HL 

(horizontal-low) component is selected for embedding. 

6. The HL component is split into non-overlapping blocks for further processing. 

7. For each block, if the message bit is zero, the watermark block is filled with 

pn_sequence_zero; otherwise, it is filled with pn_sequence_one. This process is 

repeated for all blocks. 

8. The original HL component is combined with the weighted watermark block, where 

the weight is controlled by a parameter known as the gain factor. 

9. Inverse DWT is applied to reconstruct the Y frame with the embedded watermark. 

10. The color space is converted back from YCbCr to RGB, resulting in a modified RGB 

frame. 

11. The watermarked face image, containing the embedded watermark, is placed back 

into its original position within the frame. 

12. Steps 3 through 11 are repeated for each subsequent frame until the final frame is 

processed. 

13. The watermarked video is generated by combining all the watermarked frames. 
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(a) 

(b) 

Figure 3.9: DWT based watermarking method with K=100 and BS=8 (a) 5 frames of video 

(b) Watermarked Frames 

3.2.5   Extraction Process 

1. The watermarked video is divided into multiple individual frames. 

2. Facial regions within each frame are identified and localized using algorithms like 

Viola-Jones or deep learning-based face detection methods. 

3. Two pseudo-random sequences, named pn_sequence_one and pn_sequence_zero, are 

generated. These sequences must match those used during the embedding process. 

4. The color space of each frame is converted from RGB to YCbCr format. 

5. A discrete wavelet transform (DWT) is applied to the Y channel, and the HL sub-band 

is selected for further processing. 

6. The HL sub-band is divided into non-overlapping blocks for analysis. 

7. Each block is correlated with both pseudo-random sequences. If the correlation is 

higher with pn_sequence_zero, the extracted bit is set to 0; otherwise, it is set to 1. This 

process is repeated for all blocks to retrieve the embedded watermark. 

8. Steps 3 to 7 are repeated for subsequent frames until the entire video has been processed 

and the watermark is fully extracted. 

 

Frame-1 Frame-2 Frame-3 Frame-4 Frame-5 

     

Watermarked:

1 

Watermarked:

2 

Watermarked:

3 

Watermarked:

4 

Watermarked:

5 

     

Recovered:1 Recovered:2 Recovered:3 Recovered:4 Recovered:5 
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Figure 3.10: Recovered Messages 

3.2.6   Results 

 

Alpha=10 Alpha=30 Alpha=50 Alpha=70 Alpha=90 

     

46.7082 40.7597 36.887 34.6422 33.1722 

(a) 

Alpha=10 Alpha=30 Alpha=50 Alpha=70 Alpha=90 

     

0.5678 0.8012 0.8741 0.8996 0.9285 

(b) 

Figure 3.11: Results with various gain factors (a) Watermarked Frame 1 (b) Recovered 

Messages 

 

 

 

Table 3.3: DWT with K=100 & BS=8 

     

Frame  

No. 

PSNR (db) MSE Correlation 

1 32.9991 35.8512 0.9351 

2 32.5858 35.1212 0.9310 

3 31.4432 35.6785 0.9364 

4 32.9010 34.8070 0.9333 

5 32.5321 35.9807 0.9384 
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Alpha PSNR (db) MSE Correlation 

10 46.7082 1.3876 0.5678 

20 43.4634 2.9291 0.7371 

30 40.7597 5.459 0.8012 

40 38.5981 8.9799 0.8432 

50 36.887 13.3163 0.8741 

60 35.6228 17.8154 0.8935 

70 34.6422 22.3286 0.8996 

80 33.8469 26.8156 0.8996 

90 33.1722 31.3231 0.9285 

100 32.5858 35.8512 0.9351 

Table 3.4: DWT with Various values of K 

 

3.2.7   Observations  

Below are the observations recorded after successfully implementing the embedding and 

extraction algorithms. For these observations, a gain factor of 100 was used to evaluate both 

perceptibility and robustness. A higher PSNR value indicates better perceptibility, while a 

higher correlation value reflects stronger robustness. 

1. Increasing the gain factor results in a reduction in perceptibility. 

2. Robustness improves as the gain factor increases. 

3. Frames appear visually acceptable when the PSNR exceeds 28 dB, and the embedded 

message becomes distinguishable when the correlation value is above 0.50. 

4. This approach is vulnerable to attacks such as average filtering, median filtering, 

rotation, and high-pass filtering. 

5. Partial robustness is observed against attacks like Gaussian low-pass filtering, 

compression, color reduction, Gaussian noise, salt-and-pepper noise, and speckle 

noise. 

6. The method demonstrates complete robustness against histogram equalization, linear 

camera motion, and cropping. 

 

3.2.8 Comparison - Correlation Method & DCT Method: 

1. Among the three methods, this approach offers the highest perceptibility at the same 

gain factor, albeit with a significant difference in robustness. 
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2. Compared to the other two methods, this approach exhibits lower robustness against 

most types of attacks. 
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