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Recent trend of research is to hybridize two and more algorithms to obtain superior solution in the field
of optimization problems. In this context, a new technique hybrid Particle Swarm Optimization (PSO)-
Multi verse Optimizer (MVO) is exercised on some unconstraint benchmark test functions and the most
common problem of the modern power system named Optimal Reactive Power Dispatch (ORPD) is opti-
mized using the novel hybrid meta-heuristic optimization algorithm Particle Swarm Optimization-Multi
Verse Optimizer (HPSO-MVO) method. Hybrid PSO-MVO is combination of PSO used for exploitation
phase and MVO for exploration phase in uncertain environment. Position and Speed of particle is mod-
ernised according to location of universes in each iteration. The hybrid PSO-MVO method has a fast con-
vergence rate due to use of roulette wheel selection method. For the ORPD solution, standard IEEE-30 bus
test system is used. The hybrid PSO-MVO method is implemented to solve the proposed problem. The
problems considered in the ORPD are fuel cost reduction, Voltage profile improvement, Voltage stability
enhancement, Active power loss minimization and Reactive power loss minimization. The results
obtained with hybrid PSO-MVO method is compared with other techniques such as Particle Swarm
Optimization (PSO) and Multi Verse Optimizer (MVO). Analysis of competitive results obtained from
HPSO-MVO validates its effectiveness compare to standard PSO and MVO algorithm.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At the present time, hybridize of two and more algorithms to
obtain superior solution in the field of optimization problems
and application in The Optimal Reactive Power Dispatch (ORPD)
is very significant problem and most focused objective for power
system planning and operation [1]. The ORPD is the elementary
tool which permits the utilities to identify the economic opera-
tional and much secure states in the system [2,3]. The ORPD prob-
lem is one of the utmost operating desires of the electrical power
system [4]. The prior function of ORPD problem is to evaluate the
optimum operational state for Bus system by minimizing each
objective function within the limits of the operational constraints
like equality constraints and inequality constraints [5]. Hence the
Optimal Reactive Power Dispatch problem can be defined as an
extremely non-linear and non-convex multimodal optimisation
problem [6].

From the past few years too many optimization techniques
were used for the solution of the Optimal Reactive Power Dispatch
(ORPD) problem. Some traditional methods are used to solve the
proposed problem have been suffered from some limitations like
converging at local optima, not suitable for binary or integer prob-
lems and also have the assumptions like the convexity, differentia-
bility, and continuity [7]. Hence these techniques are not suitable
for the actual ORPD situation [8,9]. All these limitations are over-
come by meta-heuristic optimization methods like genetic algo-
rithm (GA), Particle Swarm Optimization algorithm (PSO), ant
colony algorithm (ACO), differential evolution algorithm (DEA)
and harmony search algorithm (HSA) [10,11].

In the present work, a newly introduced hybrid meta-heuristic
optimisation technique named Hybrid Particle Swarm
Optimization-Multi Verse Optimizer (HPSO-MVO) is applied to
solve the Optimal Reactive Power Dispatch problem. HPSO-MVO
comprises of best characteristic of both Particle Swarm Optimiza-
tion [12] and Multi Verse Optimizer [13] algorithm. The
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capabilities of HPSO-MVO are finding the near global solution, fast
convergence rate due to use of roulette wheel selection, can handle
continuous and discrete optimization problems.

In this work, the HPSO-MVO is implemented to unconstraint
bench mark function and standard IEEE-30 bus test system [14]
to solve the ORPD [15–20] problem. There are five objective cases
considered in this paper that has to be optimize using HPSO-MVO
technique are Fuel Cost Reduction, Voltage Stability Improvement,
Voltage Deviation Minimization, Active Power Loss Minimization
and Reactive Power Loss Minimization. The result shows the opti-
mal adjustments of control variables in accordance with their lim-
its. The results obtained using HPSO-MVO technique has been
compared with standard Particle Swarm Optimisation (PSO) and
Multi Verse Optimizer (MVO) techniques. The results show that
HPSO-MVO gives better optimization values as compared to other
methods which proves the effectiveness of the proposed algorithm.

The structure of the paper can be given as follow: – Section 1
consists of Introduction, Section 2 includes description of partici-
pated algorithms, Section 3 consists of competitive results analysis
of unconstraint test benchmark problem and ORPD problem finally
acknowledgement and conclusion based on results is drawn.

2. Standard PSO and standard MVO

2.1. Particle Swarm Optimization

The Particle Swarm Optimization algorithm (PSO) was discov-
ered by James Kennedy and Russell C. Eberhart in 1995 [12]. This
algorithm is inspired by simulation of social psychological expres-
sion of birds and fishes. PSO includes two terms Pbest and Gbest . Posi-
tion and velocity are updated over the course of iteration from
these mathematical equations:

v tþ1
ij ¼ wv t

ij þ c1R1ðPbestt � XtÞ þ c2R2ðGbestt � XtÞ ð1Þ

Xtþ1 ¼ Xt þ v tþ1ði ¼ 1;2 . . .NPÞ And ðj ¼ 1;2 . . .NGÞ ð2Þ
where

w ¼ wmax � ðwmax �wminÞ � iteration
maxiteration

; ð3Þ

wmax = 0.4 and wmin = 0.9.v t
ij, v tþ1

ij Is the velocity of jth member of ith
particle at iteration number (t) and (t + 1). (Usually C1 = C2 = 2), r1
and r2 Random number (0, 1).

2.2. Multi-verse optimizer

Three notions such as black hole, white hole and wormhole
shown in Fig. 1 are the main motivation of the MVO algorithm.
These three notions are formulated in mathematical models to
evaluate exploitation, exploration and local search, respectively.
The white hole assumed to be the main part to produce universe.
Black holes are attracting all due to its tremendous force of gravi-
tation. The wormholes behave as time/space travel channels in
which objects can moves rapidly in universe. Main steps uses to
the universes of MVO [13]:

I. If the inflation rate is greater, the possibility of presence of
white hole is greater.

II. If the inflation rate is greater, the possibility of presence of
black hole is lower.

III. Universes having greater inflation rate are send the sub-
stances through white holes.

IV. Universes having lesser inflation rate are accepting more
substances through black holes.
The substances/objects in every universe can create random
movement in the direction of the fittest universe through worm
holes irrespective to the inflation rate. The objects are move from
a universe having higher inflation rate to a universe having lesser
inflation rate. It can assure the enhancement of the average infla-
tion rates of the entire cosmoses with the iterations. In each itera-
tion, the universes are sorted according to their inflation rates and
select one from them using the roulette wheel as a white hole. The
subsequent stages are used for this procedure. Assume that

U ¼

x11 x21 � � xd1
x12 x22 � � xd2
� � � � �
� � � � �
x1n x2n : : xdn

2
6666664

3
7777775

ð4Þ

Where, d shows the No. of variables and n shows the No. of candi-
date solutions:

x j
i ¼

x j
k; r1 < NIðUiÞ
x j
i ; r1 P NIðUiÞ

(
ð5Þ

where, x j
i shows the jth variable of ith universe, Ui indicates the ith

universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is

a random No. from [0,1], and x j
k shows the jth variable of kth uni-

verse chosen through a roulette wheel. To deliver variations for
all universe and more possibility of increasing the inflation rate
by worm holes, suppose that worm hole channels are recognized
among a universe and the fittest universe created until now. This
mechanism is formulated as:

xj
i ¼

XjþTDR�ððubj� lbjÞ� r4þ lbjÞ;r3<0:5
Xj�TDR�ððubj� lbjÞ� r4þ lbjÞ;r3P0:5

�
;r2<WEP

xj
i ;r2PWEP

8><
>: ð6Þ

where Xj shows jth variable of fittest universe created until now, lbj
indicates the min limit of jth parameter, ubj indicates max limit of

jth parameter, x j
i shows the jth parameter of ith universe, and r2,

r3, r4 are random numbers from [0, 1]. It can be concluded by the
formulation that wormhole existence probability (WEP) and travel-
ling distance rate (TDR) are the chief coefficients. The formula for
these coefficients are given by:

WEP ¼ minþ l� max�min
L

� �
ð7Þ

Where, l shows the present run, and L represent maximum run
number/iteration.

TDR ¼ 1� l1=p

L1=p
ð8Þ

Where, p states the accuracy of exploitation with the iterations. If
the p is greater, the exploitation is faster and more precise. The
complexity of the MVO algorithms based on the No. of iterations,
No. of universes, roulette wheel mechanism, and universe arranging
mechanism. The overall computational complexity is as follows:

OðMVOÞ ¼ OðlðOðQuicksortÞ þ n� d� ðOðroulette wheelÞÞÞÞ ð9Þ
OðMVOÞ ¼ Oðlðn2 þ n� d� lognÞÞ ð10Þ

Where, n shows No. of universes, l shows the maximum No. of run/
iterations, and d shows the No. of substances.



Fig. 1. Basic principle of MVO.
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3. The hybrid PSO-MVO algorithm

A set of Hybrid PSO-MVO is combination of separate PSO and
MVO. Hybrid PSO-MVO merges the best strength of both PSO in
exploitation and MVO in exploration phase towards the targeted
optimum solution when replace Pbest Value of PSO with Universe
value of MVO.

v tþ1
ij ¼ wv t

ij þ c1R1ðUniversest � XtÞ þ c2R2ðGbestt � XtÞ ð11Þ
4. Optimal Reactive Power Dispatch problem formulation

As specified before, ORPD is Optimized problem of power flow
that provides the optimum values of independent variables by
optimizing a predefined objective function with respect to the
operating bounds of the system [1]. The ORPD problem can be
mathematically expressed as a non-linear constrained optimiza-
tion problem as follows [1]:

Minimize f ða; bÞ ð12Þ
Subject to sða; bÞ ¼ 0 ð13Þ
And hða; bÞ 6 0 ð14Þ

where, a = vector of state variables, b = vector of control variables, f
(a,b) = objective function, s(a,b) = different equality constraints set, h
(a,b) = different inequality constraints set.
4.1. Variables

4.1.1. Control variables
The control variables should be adjusted to fulfill the power

flow equations. For the ORPD problem, the set for control variables
can be formulated as [1,5]:

bT ¼ ½PG2 � � � PGNGen ; VG1 � � �VGNGen ;QC1
� � �QCNCom

; T1 � � � TNTr� ð15Þ
where,

PG = Real power output at the PV (Generator) buses excluding at
the slack (Reference) bus.
VG = Magnitude of Voltage at PV (Generator) buses.
QC = shunt VAR compensation.
T = tap settings of transformer.

NGen, NTr, NCom = No. of generator units, No. of tap changing
transformers and No. of shunt VAR compensation devices,
respectively.

4.1.2. State variables
There is a need of variables for all ORPD formulations for the

characterization of the Electrical Power Engineering state of the
system. So, the state variables can be formulated as [1,5]:

aT ¼ ½PG1 ;VL1 � � �VLNLB ; QG1
� � �QGNGen

; Sl1 � � � SlNline � ð16Þ
where,

PG1 = Real power generation at reference bus.
VL = Magnitude of Voltage at Load buses.
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QG = Reactive power generation of all generators.
Sl = Transmission line loading.

NLB, Nline = No. of PQ buses and the No. of transmission lines,
respectively.

4.2. Constraints

There are two ORPD constraints named inequality and equality
constraints. These constraints are explained in the sections given
below.

4.2.1. Equality constraints
The physical condition of the power system is described by the

equality constraints of the system. These equality constraints are
basically the power flow equations which can be explained as fol-
lows [1,5].

4.2.1.1. Real power constraints. The real power constraints can be
formulated as follows:

PGi � PDi � Vi

XNB
J¼i

V j½GijCosðdijÞ þ BijSinðdijÞ� ¼ 0 ð17Þ
Fig. 2. Convergence curve of function F1.
4.2.1.2. Reactive power constraints. The reactive power constraints
can be formulated as follows:

QGi � QDi � Vi

XNB
J¼i

V j½GijCosðdijÞ þ BijSinðdijÞ� ¼ 0 ð18Þ

where, dij ¼ di � dj
Where, NB = total No. of buses, PG = real power output,

QG = reactive power output, PD = active power load demand,
QD = reactive power load demand, Bij and Gij = elements of the
admittance matrix Yij ¼ ðGij þ jBijÞ shows the susceptance and con-
ductance between bus i and j, respectively.

4.2.2. Inequality constraints
The boundaries of power system devices together with the

bounds created to surety system security are given by inequality
constraints of the ORPD [5,6].

4.2.2.1. Generator constraints. For all generating units including the
reference bus: voltage, real power and reactive power outputs
should be constrained within its minimum and maximum bounds
as given below:

Vlower
Gi

6 VGi
6 Vupper

Gi
; i ¼ 1; . . . ;NGen ð19Þ

Plower
Gi

6 PGi
6 Pupper

Gi
; i ¼ 1; . . . ;NGen ð20Þ

Qlower
Gi

6 QGi
6 Qupper

Gi
; i ¼ 1; . . . ;NGen ð21Þ
4.2.2.2. Transformer constraints. Tap settings of transformer should
be constrained inside their stated minimum and maximum bounds
as follows:

Tlower
Gi

6 TGi
6 Tupper

Gi
; i ¼ 1; . . . ;NGen ð22Þ
4.2.2.3. Shunt VAR compensator constraints. Shunt VAR compensa-
tion devices need to be constrained within its minimum and max-
imum bounds as given below:

Qlower
Ci

6 QGCi
6 Qupper

Ci
; i ¼ 1; . . . ;NGen ð23Þ
4.2.2.4. Security constraints. These comprises the limits of magni-
tude of voltage at PQ buses and loadings on transmission line. Volt-
age for every PQ bus should be limited by their minimum and
maximum operational bounds. Line flow over each lines should
not exceeds its maximum loading limit. So, these limitations can
be mathematically expressed as follows [7]:
Vlower
Li

6 VLi 6 Vupper
Li

; i ¼ 1; . . . ;NGen ð24Þ
Sli 6 Supperli
; i ¼ 1; . . . ;Nline ð25Þ

The control variables are self-constraint. The inequality con-
strained of state variables comprises magnitude of PQ bus voltage,
active power production at reference bus, reactive power produc-
tion and loadings on line may be encompassed into an objective
function in terms of quadratic penalty terms. In which, the penalty
Fig. 3. Convergence curve of function F2.
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factor is multiplied by the square of the indifference value of state
variables and is included to the objective function and any imprac-
tical result achieved is declined [7].

Penalty function may be mathematically formulated as follows:

Jaug ¼ J þ @PðPG1 � Plim
G1
Þ2 þ @V

XNLB
i¼1

ðVLi � Vlim
Li
Þ2 þ @Q

XNGen
i¼1

þ @S

XNline
i¼0

ðSli � Smax
li

Þ2 ð26Þ

where,

@P ; @V ; @Q ; @S = penalty factors
Ulim = Boundary value of the state variable U.
Fig. 4. Convergence curve of function F3.

Fig. 5. Convergence curve of function F4.
If U is greater than the maximum limit, Ulim takings the value of
this one, if U is lesser than the minimum limit Ulim takings the
value of that limit. This can be shown as follows [7]:

Ulim¼ Uupper; U > Uupper

Ulower; U < Ulower

�
ð27Þ
Fig. 6. Convergence curve of function F5.

Fig. 7. Convergence curve of function F6.
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5. Application and results

The PSO-MVO technique has been implemented for Uncon-
straint slandered Unimodal, Multimodal, composite function and
the ORPD solution for standard IEEE 30-bus test system and for a
number of cases with dissimilar objective functions. The used soft-
ware program is written in MATLAB R2014b computing surround-
ings and used on a 2.60 GHz i5 PC with 4 GB RAM.

5.1. Unconstraint Test Benchmark Function

The results Shown in Figs. 2–7 on the unimodal functions show
in Table 1 the superior exploitation of HPSO-MVO. The exploration
ability of WOA is confirmed by the results shown in Figs. 8–13 on
multimodal functions show in Table 2. The results shown in
Figs. 14–23 on Fixed dimension multi-modal benchmark functions
show in Table 3 confirm the performance of WOA in practice and
internal parameter of algorithm that shown in Table 4.

In Tables 5–7 represent results of HPSO-MVO, PSO and MVO in
terms of Average value, best value and slandered deviation values
on Uni-model, multi-model and Fixed dimension multi-modal
benchmark functions and Results of Hybrid PSO-MVO Algorithm
Table 1
Uni-modal benchmark functions.

Function Dim Range Fmin

f 1ðxÞ ¼
Pn

i¼1x
2
i � RðxÞ 10 [�100,100] 0

f 2ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij � RðxÞ 10 [�10,10] 0

f 3ðxÞ ¼
Pn

i¼1
Pi

j�1xj
� �2

� RðxÞ 10 [�100,100] 0

f 4ðxÞ ¼ maxifjxij;1 6 i 6 ng 10 [�100,100] 0

f 5ðxÞ ¼
Pn�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� � RðxÞ 10 [�30,30] 0

f 6ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 � RðxÞ 10 [�100,100] 0

f 7ðxÞ ¼
Pn

i¼1ix
4
i þ random½0;1Þ � RðxÞ 10 [�1.28,1.28] 0

Fig. 8. Convergence curve of function F7.
Best compare to PSO and MVO Algorithms in terms of Average
value, best value and slandered deviation values.

5.2. IEEE 30-bus test system

With the purpose of elucidate the strength of the suggested
PSO-MVO technique, it has been verified on the standard IEEE
30-bus test system as displays in Fig. 24. The standard IEEE 30-
bus test system shown in Fig. 24 selected in this work has the fol-
lowing features [7,12]: six generating units at buses 1,2,5,8,11 and
Fig. 9. Convergence curve of function F8.

Fig. 10. Convergence curve of function F9.



Fig. 11. Convergence curve of function F10.

Fig. 12. Convergence curve of function F11.

Fig. 13. Convergence curve of function F12.
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13, four regulating transformers having off-nominal tap ratio
between buses 4–12, 6–9, 6–10 and 28–27 and nine shunt VAR
compensators at buses 10,12,15,17,20,21,23,24 and 29.

In addition, generator cost coefficient data, the line data, bus
data, and the upper and lower bounds for the control variables
are specified in [12].

In given test system, five diverse cases have been considered
with various purposes and all the acquired outcomes are given in
Tables 3, 5, 7, 9 and 11. The very first column of this tables denotes
the optimal values of control variables found where (see Figs. 25
and 29):
- PG1 through PG6 and VG1 through VG6 signifies the power and
voltages of generator 1 to generator 6.

- T4–12, T6–9, T6–10 and T28–27 are the transformer tap settings
comprised between buses 4–12, 6–9, 6–10 and 28–27.

- QC10, QC12, QC15, QC17, QC20, QC21, QC23, QC24 and QC29 denote the
shunt VAR compensators coupled at buses 10, 12, 15, 17, 20, 21,
23, 24 and 29.

Further, fuel cost ($/h), real power losses (MW), reactive power
losses (MVAR), voltage deviation and Lmax represent the total gen-
eration fuel cost of the system, the total real power losses, the total
reactive power losses, the load voltages deviation from 1 and the
stability index, respectively. Other particulars for these outcomes
will be specified in the next sections.

The control parameters for PSO-MVO, MVO, PSO used in this
problem are given in the Table 8.

5.2.1. Case 1: Minimization of generation fuel cost.
The very common ORPD objective that is generation fuel cost

reduction shown in Fig. 3 is considered in the case 1. Therefore,
the objective function Y indicates the complete fuel cost of total
generating units and it is calculated by following equation [1]:

Y ¼
XNGen
i¼1

f ið$=hÞ ð28Þ

where, f i is the total fuel cost of ith generator, f i;may be formulated
as follow:

f i ¼ ui þ v iPGi þwiP
2
Gið$=hÞ ð29Þ

where, ui;v i and wi are the simple, the linear and the quadratic cost
coefficients of the ith generator, respectively. The cost coefficients
values are specified in [12].

The variation of the total fuel cost with different algorithms
over iterations is presented in Fig. 24. It demonstrates that the sug-
gested method has outstanding convergence characteristics. The
comparison of fuel cost obtained with different methods are shown
in Table 9 which displays that the results obtained by PSO-MVO is
better than the other methods. The optimal values of control



Table 2
Multi-modal benchmark functions.

Function Dim Range Fmin

F8ðxÞ ¼
Pn

i¼1 � xisinð
ffiffiffiffiffiffiffijxij

p Þ � RðxÞ 10 [�500,500] (�418.9829*5)

F9ðxÞ ¼
Pn

i¼1½x2i � 10cosð2pxiÞ þ 10� � RðxÞ 10 [�5.12,5.12] 0

F10ðxÞ ¼ �20exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q� �
� exp 1

n

Pn
i¼1cosð2pxiÞ

� 	þ 20þ e � RðxÞ 10 [�32,32] 0

F11ðxÞ ¼ 1
4000

Pn
i¼1x

2
i �

Qn
i¼1cos

xiffi
i

p
� �

þ 1 � RðxÞ 10 [�600,600] 0

F12ðxÞ ¼ p
n

10sinðpy1Þ þ
Pn�1

i¼1 ðyi � 1Þ2
½1þ 10sin2ðpyiþ1Þ� þ ðyn � 1Þ2

( )
yi ¼ 1þ xiþ1

4 ;

uðxi; a; k;mÞ ¼
kðxi � aÞmxi > a
0� a < xi < a
kð�xi � aÞmxi < �a

8<
:

10 [�50,50] 0

F13ðxÞ ¼ 0:1 sin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ�
þðxn � 1Þ2½1þ sin2ð2pxnÞ�

( )
þPn

i¼1uðxi;5;100;4Þ � RðxÞ
10 [�50,50] 0

Fig. 14. Convergence curve of function F13. Fig. 15. Convergence curve of function F14.
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variables obtained by different algorithms for case 1 are specified
in Table 10. By means of the same settings i.e. control variables
boundaries, initial conditions and system data, the results achieved
in case 1 with the PSO-MVO technique are compared to some other
methods and it displays that the total fuel cost is greatly reduced
compared to the initial case [7]. Quantitatively, it is reduced from
901.951$/h to 799.101$/hr.
5.2.2. Case 2: Voltage profile improvement.
Bus voltage is considered as most essential and important secu-

rity and service excellence indices [7]. Here the goal is to reduce
the fuel cost and increase voltage profile simultaneously by reduc-
ing the voltage deviation of PQ (load) buses from the unity 1.0 p.u.

Hence, the objective function may be formulated by following
equation [5]:

Y ¼ Ycos t þwYvoltage�deviation ð30Þ

where, w is an appropriate weighting factor, to be chosen by the
user to offer a weight or importance to each one of the two terms
of the objective function. Ycos t and Yvoltage�deviation are specified as fol-
lows [5]:

Ycos t ¼
XNGen
i¼1

f i ð31Þ
Yvoltage dev iation ¼
XNGen
i¼1

jVi � 1:0j ð32Þ

The variation of voltage deviation shown in Fig. 26 with differ-
ent algorithms over iterations is sketched in Fig. 3. It demonstrates
that the suggested method has good convergence characteristics.
The statistical values of voltage deviation obtained with different
methods are shown in Table 18 which displays that the results
obtained by PSO-MVO is better than the other methods. The opti-
mal values of control variables obtained by different algorithms for
case 2 are specified in Table 12. By means of the same settings the
results achieved in case 2 with the PSO-MVO technique are com-
pared to some other methods and it displays that the voltage



Fig. 17. Convergence curve of function F16.

Fig. 18. Convergence curve of function F18.

Fig. 19. Convergence curve of function F19.

Fig. 16. Convergence curve of function F15.
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deviation is greatly reduced compared to the initial case [7]. It has
been made known that the voltage deviation is reduced from
1.1496 p.u. to 0.0994 p.u. using PSO-MVO technique.
5.2.3. Case 3: Voltage stability enhancement
Presently, the transmission systems are enforced to work

nearby their safety bounds, because of cost-effective and environ-
mental causes. One of the significant characteristic of the system is
its capability to retain continuously tolerable bus voltages to each
node beneath standard operational environments, next to the rise
in load, as soon as the system is being affected by disturbance. The
unoptimized control variables may cause increasing and unman-
ageable voltage drop causing a tremendous voltage collapse [5].
Hence, voltage stability is inviting ever more attention. By using
various techniques to evaluate the margin of voltage stability,
Glavitch and Kessel have introduced a voltage stability index called
L-index depends on the viability of load flow equations for every



Fig. 20. Convergence curve of function F20.

Fig. 21. Convergence curve of function F21.

Fig. 22. Convergence curve of function F22.

Fig. 23. Convergence curve of function F23.
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node [14]. The L-index of a bus shows the probability of voltage
collapse circumstance for that particular bus. It differs between 0
and 1 equivalent to zero load and voltage collapse, respectively.

For the given system with NB, NGen and NLB buses signifying
the total No. of buses, the total No. of generator buses and the total
No. of load buses, respectively. The buses can be distinct as PV (gen-
erator) buses at the head and PQ (load) buses at the tail as follows
[5]:
IL
IG


 �
¼ ½Ybus�

VL

VG


 �
¼ YLL YLG

YGL YGG


 �
VL

VG


 �
ð33Þ



Table 3
Fixed dimension multi-modal benchmark functions.

Function Dim Range Fmin

F14ðxÞ ¼ 1
500 þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6

� ��1 2 [�65.536,65.536] 1

f 15ðxÞ ¼
P11

i¼1ai � xiðb2i þbix2Þ
b2i þbix3þx4


 �2 4 [�5,5] 0.00030

f 16ðxÞ ¼ 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42 2 [�5,5] �1.0316

f 17ðxÞ ¼ x2 � 5:1
4p2 x21 þ 5

p x1 � 6
� �2

þ 10 1� 1
8p

� 	
cos x1 þ 10

2 [�5,0] [10,15] 0.398

f 18ðxÞ ¼
1þ x1 þ x2 þ 1ð Þ2
19� 14x1 þ 3x21�
14x2 þ 6x1x2 þ 3x22

� �2
4

3
5 �

30þ 2x1 � 3x2ð Þ2

� 18� 32x1 þ 12x21þ
48x2 � 36x1x2 þ 27x22

� �2
4

3
5 2 [�2,2] 3

f 19ðxÞ ¼ �P4
i¼1ci exp �P3

j¼1aijðxj � pijÞ2
� �

3 [0,1] �3.86

f 20ðxÞ ¼ �P4
i¼1ci exp �P6

j¼1aijðxj � pijÞ2
� �

6 [0,1] �3.32

f 21ðxÞ ¼ �P5
i¼1½ðX � aiÞðX � aiÞT þ ci�

�1 4 [0,10] �10.1532

f 22ðxÞ ¼ �P7
i¼1½ðX � aiÞðX � aiÞT þ ci�

�1 4 [0,10] �10.4028

f 23ðxÞ ¼ �P10
i¼1½ðX � aiÞðX � aiÞT þ ci�

�1 4 [0,10] �10.5363

Table 4
Internal Parameters.

Parameter Name Search Agents No. Max. Iteration No. No. of Evolution

F1-F23 30 500 5–20

Note: Scale specified on axis, Not specified means axis are linear scale.

Table 5
Result for Uni-modal benchmark functions.

Fun. Std. PSO Std. MVO HPSO-MVO

Ave Best S.D. Ave Best S.D. Ave Best S.D.

F1 7.687E�11 7.553E�11 1.88E�12 0.0087 0.0083 6.6060E�04 5.4729E�04 2.5304E�04 4.1613E�04
F2 2.416E�07 9.005E�08 2.144E�07 0.0339 0.0284 0.0077 0.0156 0.0090 0.0093
F3 0.1510 0.6918 0.1157 0.0715 0.0494 0.0312 0.0252 0.0193 0.0083
F4 0.0340 0.0287 0.0075 0.0557 0.0544 0.0018 0.0216 0.0124 0.0130
F5 118.57 6.1391 159.01 52.5296 4.2602 68.2633 5.2500 2.6575 3.6663
F6 8.7470E�10 4.1227E�11 1.1787E�09 0.0067 0.0047 0.0028 0.0029 0.0015 0.0020
F7 0.0095 0.0088 0.001 0.0092 0.0049 0.0061 0.0029 0.0019 0.0015

The significance of bold text represent best value of fitness function in the table.

Table 6
Result for multi-modal benchmark functions.

Fun. Std. PSO Std. MVO HPSO-MVO

Ave Best S.D. Ave Best S.D. Ave Best S.D.

F8 �3.29E+03 �3.35E+03 84.8 �2.73E+03 �3.08E+03 489.4 �3.61E+03 �3.94E+03 459.00
F9 8.0765 7.9597 0.16 11.450 6.9745 6.329 7.4680 4.9832 3.5141
F10 6.2788E�06 4.6271E�06 2.33E�06 0.0473 0.0397 0.010 0.0159 0.0090 0.0098
F11 0.1970 0.1847 0.01 0.5599 0.1827 0.533 0.2376 0.1622 0.1066
F12 1.155E�10 9.136E�11 3.42E�11 9.029E�04 2.249E�04 9.588E�04 0.0063 2.339E�05 0.0089
F13 6.756E�12 4.996E�12 2.48E�12 0.0028 6.091E�04 0.003 1.472E�04 9.962E�05 6.7358E�05

The significance of bold text represent best value of fitness function in the table.

Table 7
Result for Fixed dimension multi-modal benchmark functions.

Fun. Std. PSO Std. MVO HPSO-MVO

Ave Best S.D. Ave Best S.D. Ave Best S.D.

F14 0.9980 0.9980 0 0.9980 0.9980 6.51E�11 0.9980 0.9980 1.14E�14
F15 0.0124 0.0023 0.0144 9.9363E�04 7.6374E�04 3.25E�04 6.4613E�04 5.5411E�04 1.30E�04
F16 �1.031 �1.0316 2.2E�16 �1.0316 �1.0316 2.00E�07 �1.0316 �1.0316 1.86E�11
F17 0.397 0.3979 0 N/A N/A N/A N/A N/A N/A
F18 3.0000 3.0000 1.8E�15 3.0000 3.0000 3.64E�06 3.0000 3.0000 7.14E�11
F19 �3.862 �3.8628 4.4E�16 �3.8628 �3.8628 3.05E�07 �3.8628 �3.8628 8.37E�11
F20 �3.201 �3.2031 0.0025 �3.2591 �3.3220 0.0889 �3.2350 �3.3220 0.1231
F21 �3.891 �5.1008 1.7097 �6.3916 �10.1528 5.3191 �7.6270 �10.153 3.5726
F22 �10.4029 �10.4029 1.7E�15 �7.7450 �10.4026 3.7584 �10.4029 �10.4029 1.23E�06
F23 �6.479 �10.5364 5.7379 �10.536 �10.5363 4.34E�04 �10.536 �10.536 2.61E�06

The significance of bold text represent best value of fitness function in the table.
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Fig. 24. Single line diagram of IEEE 30-bus test system.

Table 8
Basic parameters used in ORPD problem for PSO-MVO, MVO and PSO.

Sr. No. Parameters Value

1 Population (No. of Search agents) (N) 40
2 Maximum iterations count (t) 500
3 No. of Variables (dim) 6
4 Random Number [0,1]

Table 9
Comparison of fuel cost obtained with different algorithms.

Method Fuel Cost
($/hr)

Method Description

HPSO-MVO 799.101 Hybrid Particle Swarm Optimization-Multi Verse
Optimizer

MVO 799.242 Multi Verse Optimizer
PSO 799.704 Particle Swarm Optimization
DE 799.289 Differential Evolution [6]
BHBO 799.921 Black Hole- Based Optimization [7]

The significance of bold text represent best value of fitness function in the table.

Table 10
Optimal values of control variables for case 1 with different algorithms.

Control Variable Min Max Initial PSO-MVO MVO PSO

PG1 50 200 99.2230 177.104 177.349 177.105
PG2 20 80 80 48.645 48.712 48.748
PG5 15 50 50 21.261 21.278 21.318
PG8 10 35 20 21.060 20.962 20.986
PG11 10 30 20 11.966 11.836 12.049
PG13 12 40 20 12.000 12.000 12.000
VG1 0.95 1.1 1.05 1.100 1.100 1.100
VG2 0.95 1.1 1.04 1.088 1.088 1.088
VG5 0.95 1.1 1.01 1.061 1.061 1.061
VG8 0.95 1.1 1.01 1.069 1.070 1.070
VG11 0.95 1.1 1.05 1.100 1.100 1.100
VG13 0.95 1.1 1.05 1.100 1.100 1.100
T4-12 0 1.1 1.078 1.021 0.964 0.976
T6-9 0 1.1 1.069 0.913 1.045 0.975
T6-10 0 1.1 1.032 0.995 1.038 1.015
T28-27 0 1.1 1.068 0.971 0.990 0.966
QC10 0 5 0 1.595 3.525 2.353
QC12 0 5 0 4.929 1.770 5.000
QC15 0 5 0 5.000 2.029 0.000
QC17 0 5 0 5.000 2.028 0.689
QC20 0 5 0 5.000 3.514 0.003
QC21 0 5 0 5.000 2.415 5.000
QC23 0 5 0 4.926 1.551 0.000
QC24 0 5 0 5.000 2.997 0.000
QC29 0 5 0 2.393 3.991 0.000
Fuel Cost($/hr) – – 901.951 799.101 799.242 799.704

The significance of bold text represent best value of fitness function in the table.
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where, YLL, YLG, YGL and YGG are co-matrix of Ybus. The subsequent
hybrid system of equations can be expressed as:

VL

IG


 �
¼ ½H� IL

VG


 �
¼ HLL HLG

HGL HGG


 �
IL
VG


 �
ð34Þ

where matrix H is produced by the partially inversing of Ybus, HLL,
HLG, HGL and HGG are co- matrix of H, VG, IG, VL and IL are voltage
and current vector of Generator buses and load buses, respectively.

The matrix H is given by:
½H� ¼ ZLL �ZLLYLG

YGLZLL YGG � YGLZLLYLG


 �
ZLL ¼ Y�1

LL ð35Þ
Hence, the L-index denoted by Lj of bus j is represented as follows:



Table 11
Comparison of voltage deviations obtained with different algorithms.

Method Voltage deviation
(p.u)

Method description

HPSO-MVO 0.0994 Hybrid Particle Swarm Optimization-
Multi Verse Optimizer

MVO 0.1056 Multi Verse Optimizer
PSO 0.1506 Particle Swarm Optimization
DE 0.1357 Differential Evolution [6]
BHBO 0.1262 Black Hole- Based Optimization [7]

The significance of bold text represent best value of fitness function in the table.
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Lj ¼ 1�
XNGen
i¼1

HLGji

v i

v j

�����
����� j ¼ 1;2 . . . ;NL ð36Þ

Hence, the stability of the whole system is described by a global
indicator Lmax which is given by [7],

Lmax ¼ maxðLjÞ j ¼ 1;2 . . . ;NL ð37Þ
The system is more stable as the value of Lmax is lower.
Fig. 25. Fuel cost variations w

Fig. 26. Voltage deviation minimiza
The voltage stability can be enhance by reducing the value of
voltage stability indicator L-index at every bus of the system [7].

Thus, the objective function may be given as follows:

Y ¼ Ycos t þwYvoltage Stability Enhancement ð38Þ

where,

Ycos t ¼
XNGen
i¼1

f i ð39Þ
Yvoltage stability enhancement ¼ Lmax ð40Þ
The variation of the Lmax index with different algorithms over

iterations is presented in Fig. 27. The statistical results obtained
with different methods are shown in Table 13 which displays that
PSO-MVO method gives better results than the other methods. The
optimal values of control variables obtained by different algo-
rithms for case 3 are given in Table 14. After applying the PSO-
MVO technique, it appears from Table 14 that the value of Lmax
ith different algorithms.

tion with different algorithms.



Fig. 27. Lmax variations with different algorithms.

Fig. 28. Minimization of active power losses with different algorithms.
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is considerably decreased in this case compared to initial [7] from
0.1723 to 0.1127. Thus, the distance from breakdown point is
improved.

5.2.4. Case 4: Minimization of active power transmission losses
In the case 4 the Optimal Reactive Power Dispatch objective is

to reduce the active power transmission losses, which can be rep-
resented by power balance equation as follows [7]:

J ¼
XNGen
i¼1

Pi ¼
XNGen
i¼1

PGi �
XNGen
i¼1

PDi ð41Þ
Fig. 27 shows the tendency for reducing the total real power
losses objective function using the different techniques. The active
power losses obtained with different techniques are shown in
Table 15 which made sense that the results obtained by PSO-
MVO gives better values than the other methods. The optimal val-
ues of control variables obtained by different algorithms for case 4
shown in Fig. 28 are displayed in Table 16. By means of the same
settings the results achieved in case 4 with the PSO-MVO tech-
nique are compared to some other methods and it displays that
the real power transmission losses are greatly reduced compared
to the initial case [7] from 5.821 to 2.854.



Fig. 29. Minimization of reactive power transmission losses with different algorithms.

Table 12
Optimal values of control variables for case 2 with different algorithms.

Control Variable Min Max Initial PSO-MVO MVO PSO

PG1 50 200 99.2230 176.258 177.983 175.922
PG2 20 80 80 49.011 48.765 46.389
PG5 15 50 50 21.857 21.475 21.597
PG8 10 35 20 21.314 20.158 19.396
PG11 10 30 20 12.816 12.932 17.656
PG13 12 40 20 12.008 12.029 12.000
VG1 0.95 1.1 1.05 1.038 1.045 1.047
VG2 0.95 1.1 1.04 1.023 1.027 1.034
VG5 0.95 1.1 1.01 1.012 1.010 0.999
VG8 0.95 1.1 1.01 1.003 1.004 1.005
VG11 0.95 1.1 1.05 1.062 1.065 0.999
VG13 0.95 1.1 1.05 0.988 0.996 1.018
T4-12 0 1.1 1.078 1.083 1.077 0.954
T6-9 0 1.1 1.069 0.900 0.900 0.969
T6-10 0 1.1 1.032 0.946 0.928 0.989
T28-27 0 1.1 1.068 0.958 0.965 0.960
QC10 0 5 0 4.202 4.973 3.948
QC12 0 5 0 4.171 0.716 1.765
QC15 0 5 0 4.659 0.382 4.844
QC17 0 5 0 0.000 0.434 3.075
QC20 0 5 0 5.000 3.092 4.687
QC21 0 5 0 5.000 4.398 4.948
QC23 0 5 0 4.692 5.000 1.623
QC24 0 5 0 5.000 3.000 3.559
QC29 0 5 0 1.269 2.234 2.034
Vd – – 1.1496 0.0994 0.1056 0.1506

The significance of bold text represent best value of fitness function in the table.

Table 13
Comparison of Lmax index obtained with different algorithms.

Method Lmax Method description

HPSO-
MVO

0.1127 Hybrid Particle Swarm Optimization-Multi Verse
Optimizer

MVO 0.1136 Multi Verse Optimizer
PSO 0.1180 Particle Swarm Optimization
DE 0.1219 Differential Evolution [6]
BHBO 0.1167 Black Hole- Based Optimization [7]

The significance of bold text represent best value of fitness function in the table.

Table 14
Optimal values of control variables for case 3 with different algorithms.

Control Variable Min Max Initial PSO-MVO MVO PSO

PG1 50 200 99.2230 170.253 180.832 158.331
PG2 20 80 80 46.396 46.817 49.050
PG5 15 50 50 21.281 22.584 18.956
PG8 10 35 20 22.471 15.043 31.224
PG11 10 30 20 19.365 12.948 15.906
PG13 12 40 20 12.075 14.144 17.801
VG1 0.95 1.1 1.05 1.100 1.100 1.098
VG2 0.95 1.1 1.04 1.086 1.089 1.090
VG5 0.95 1.1 1.01 1.085 1.071 1.043
VG8 0.95 1.1 1.01 1.100 1.076 1.058
VG11 0.95 1.1 1.05 1.100 1.083 1.081
VG13 0.95 1.1 1.05 1.100 1.098 1.100
T4-12 0 1.1 1.078 1.070 0.941 0.900
T6-9 0 1.1 1.069 0.961 0.967 1.007
T6-10 0 1.1 1.032 0.967 0.978 1.071
T28-27 0 1.1 1.068 0.979 0.961 0.933
QC10 0 5 0 4.947 1.737 3.286
QC12 0 5 0 5.000 4.275 1.221
QC15 0 5 0 3.254 4.737 4.601
QC17 0 5 0 4.356 4.961 1.082
QC20 0 5 0 4.598 1.584 0.444
QC21 0 5 0 4.994 4.971 0.399
QC23 0 5 0 4.954 3.703 2.446
QC24 0 5 0 4.833 4.457 4.753
QC29 0 5 0 4.997 4.998 3.887
Lmax – – 0.1723 0.1127 0.1136 0.1180

The significance of bold text represent best value of fitness function in the table.

Table 15
Comparison of active power transmission losses obtained with different algorithms.

Method Active power loss
(MW)

Method description

HPSO-
MVO

2.854 Hybrid Particle Swarm Optimization-Multi
Verse Optimizer

MVO 2.881 Multi Verse Optimizer
PSO 3.026 Particle Swarm Optimization
BHBO 3.503 Black Hole- Based Optimization [7]

The significance of bold text represent best value of fitness function in the table.
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Table 16
Optimal values of control variables for case 4 with different algorithms.

Control variable Min Max Initial PSO-MVO MVO PSO

PG1 50 200 99.2230 51.271 51.327 51.427
PG2 20 80 80 80.000 80.000 80.000
PG5 15 50 50 50.000 50.000 50.000
PG8 10 35 20 34.999 35.000 35.000
PG11 10 30 20 30.000 30.000 30.000
PG13 12 40 20 40.000 40.000 40.000
VG1 0.95 1.1 1.05 1.100 1.100 1.100
VG2 0.95 1.1 1.04 1.098 1.097 1.100
VG5 0.95 1.1 1.01 1.079 1.081 1.083
VG8 0.95 1.1 1.01 1.087 1.088 1.090
VG11 0.95 1.1 1.05 1.100 1.100 1.100
VG13 0.95 1.1 1.05 1.100 1.100 1.100
T4-12 0 1.1 1.078 1.007 1.037 0.977
T6-9 0 1.1 1.069 0.943 0.901 1.100
T6-10 0 1.1 1.032 0.988 0.994 1.100
T28-27 0 1.1 1.068 0.982 0.987 0.998
QC10 0 5 0 5.000 0.306 4.065
QC12 0 5 0 4.556 3.082 0.000
QC15 0 5 0 4.436 4.552 5.000
QC17 0 5 0 4.826 0.815 5.000
QC20 0 5 0 3.321 2.787 0.000
QC21 0 5 0 4.856 1.106 5.000
QC23 0 5 0 4.790 4.987 5.000
QC24 0 5 0 4.470 2.308 0.000
QC29 0 5 0 4.868 3.825 0.000
PLoss (MW) – – 5.8219 2.854 2.881 3.026

The significance of bold text represent best value of fitness function in the table.

Table 17
Comparison of reactive power losses obtained with different algorithms.

Method Reactive power loss
(MVAR)

Method description

HPSO-
MVO

�25.184 Hybrid Particle Swarm Optimization-
Multi Verse Optimizer

MVO �25.038 Multi Verse Optimizer
PSO �23.407 Particle Swarm Optimization
BHBO �20.152 Black Hole- Based Optimization [7]

The significance of bold text represent best value of fitness function in the table.

Table 18
Optimal values of control variables for case 5 with different algorithms.

Control variable Min Max Initial PSO-MVO MVO PSO

PG1 50 200 99.2230 51.324 51.348 51.644
PG2 20 80 80 80.000 80.000 80.000
PG5 15 50 50 50.000 50.000 50.000
PG8 10 35 20 35.000 35.000 35.000
PG11 10 30 20 29.994 29.998 30.000
PG13 12 40 20 40.000 40.000 40.000
VG1 0.95 1.1 1.05 1.100 1.100 1.100
VG2 0.95 1.1 1.04 1.100 1.100 1.100
VG5 0.95 1.1 1.01 1.092 1.093 1.100
VG8 0.95 1.1 1.01 1.100 1.100 1.100
VG11 0.95 1.1 1.05 1.099 1.100 1.100
VG13 0.95 1.1 1.05 1.100 1.100 1.100
T4-12 0 1.1 1.078 0.998 1.000 0.962
T6-9 0 1.1 1.069 0.969 0.937 1.100
T6-10 0 1.1 1.032 0.987 0.993 0.961
T28-27 0 1.1 1.068 0.981 0.983 0.964
QC10 0 5 0 4.806 0.775 5.000
QC12 0 5 0 0.313 3.857 0.000
QC15 0 5 0 4.997 3.668 0.000
QC17 0 5 0 5.000 2.923 0.000
QC20 0 5 0 5.000 4.170 0.000
QC21 0 5 0 5.000 2.113 0.000
QC23 0 5 0 4.923 3.390 0.000
QC24 0 5 0 5.000 5.000 5.000
QC29 0 5 0 2.293 2.952 0.000
QLoss (MVAR) – – �4.6066 �25.184 �25.038 �23.407

The significance of bold text represent best value of fitness function in the table.
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5.2.5. Case 5: Minimization of reactive power transmission losses
The accessibility of reactive power is the main point for static

system voltage stability margin to support the transmission of
active power from source to sinks [7].

Thus, the minimization of VAR losses are given by the following
expression:

J ¼
XNGen
i¼1

Qi ¼
XNGen
i¼1

QGi �
XNGen
i¼1

QDi ð42Þ

It is notable that the reactive power losses are not essentially
positive. The variation of reactive power losses with different
methods shown in Fig. 28. It demonstrates that the suggested
method has good convergence characteristics. The statistical val-
ues of reactive power losses obtained with different methods are
shown in Table 17 which displays that the results obtained by
hybrid PSO-MVO method is better than the other methods. The
optimal values of control variables obtained by different algo-
rithms for case 5 are given in Table 11. It is shown that the reactive
power losses are greatly reduced compared to the initial case [7]
from �4.6066 to �25.184 using hybrid PSO-MVO method.
6. Conclusion

Hybrid Particle Swarm Optimization-Multi Verse Optimizer
(HPSO-MVO), Multi Verse Optimizer and Particle Swarm Optimiza-
tion Algorithm are successfully applied to unconstrained bench-
mark function and standard IEEE 30-bus test systems to solve
the Optimal Reactive Power Dispatch problem for the various types
of cases. The results gives the optimal settings of control variables
with different methods which demonstrate the effectiveness of the
different techniques. The solutions obtained from the hybrid PSO-
MVO method approach has good convergence characteristics and
gives the better results compared to MVO and PSO methods which
confirms the effectiveness of proposed algorithm.
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