
IJSRD - International Journal for Scientific Research & Development| Vol. 1, Issue 11, 2014 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 2495

Abstract--- In this basic idea of compiler and its

functionality is discussed. Compiler is the most important

part of computer system. When user tries to run any

program in any programming language, compiler comes into

picture at first. The key role of compiler is to scan the entire

program and convert it not machine language. Compiler

construction is very vast branch of computer science that

deals with the theoretical and practical aspects of designing

the compiler using different programming language.

I. INTRODUCTION

Compiler is software that scans the entire program first and

then translates it into machine code. Before converting the

entire program into machine code, it checks the entire

program for syntax error if any and reports the list of syntax

errors. When all syntax errors are removed it converts the

source code into machine code which is also known as

object code.

There are two aspects of compilation:

(1) Generate code to implement meaning of a source

program.

(2) Provide diagnostics for violation of program

language Symantec in a source program.

II. COMPILATION PROCESS

Compilation process consists of following steps:

A. Lexical Analysis

The lexical analyzer reads the stream of characters which

makes the source program and groups them into meaningful

sequences called lexemes.

B. Syntax Analysis

The list of tokens produced by the lexical analysis phase

forms the input and arranges them in the form of tree-

structure called the syntax tree. This reflects the structure of

the program. This phase is also called parsing.

C. Semantic analysis

This phase uses the syntax tree and the information in the

symbol table to check the source program for consistency

with the language definition.

D. Intermediate Code Generation

This is the process of translating a source program into

target code. Compiler may generate one or more

intermediate codes.

E. Code Optimization

This is a machine-independent phase which attempts to

improve the intermediate code for generating better target

code.

F. Code Generator

This takes the intermediate representation of the source

program as input and maps it to the target language.

III. COMPILER CONSTRUCTION TOOLS

Compiler construction tools can use modern software

development environments containing tools such as

language editors, debuggers, version managers, profilers,

test harnesses, and so on. Along with these general software

development tools, other more specialized tools have been

created to help implement various phases of a compiler.

These tools use specialized programming languages for

implementing specific components using many sophisticated

and complex algorithms. Most of the tools provide high

degree of abstraction means the details of implementation is

hidden from outside world.

Some commonly used compiler-construction (CC) tools

include:

1. Parser generators that automatically produce syntax

analyzers from a grammatical description of a

programming language.

2. Scanner generators that produce lexical analyzers from a

regular- expression description of the tokens of a

language.

3. Syntax-directed translation engines that produce

collections of routines for walking a parse tree and

generating intermediate code.

4. Code-generator generators that produce a code generator

from a collection of rules for translating each operation

of the intermediate language into the machine language

for a target machine.

5. Data-flow analysis engines that facilitate the gathering of

information about how values are transmitted from one

part of a program to each other part. Data-flow analysis

is a key part of code optimization.

6. Compiler-construction toolkits that provide an integrated

set of routines for constructing various phases of a

compiler.

IV. SOFTWARE TOOLS IN COMPILER

CONSTRUCTION

Computing involves two main activities: program

development and use of application software. Language

processors and operating system pay an obvious role in

these activities. A less obvious but vital role is played by

program that help in developing and using other programs.

These programs, called software tools, perform various

housekeeping tasks involved in program development and

application usage.

Software tools is a system program which:

Compiler Construction Tools

Mrs. Bhumika S. Zalavadia1

1
HOD Diploma Computer Department

1
Atmiya Institute of Technology and Science for Diploma Studies-Rajkot, India

Compiler Construction Tools

(IJSRD/Vol. 1/Issue 11/2014/0048)

All rights reserved by www.ijsrd.com 2496

 Interface a program with the entity generating its

input data

 Interfaces the results of a program with the entity

consuming them.

Generally there are two kinds of software tools:

1) Software tools for program development

2) Software tools for user interfaces.

The fundamental steps in program development are:

1) Program design and coding

2) Program documentation.

3) Program translation, linking and loading.

4) Program testing and debugging

5) Performance tuning

6) Reformatting the data and / or results of a program

to suit other programs.

1) Program design and coding:

Two categories of tools used in program design and coding

are:

 Program generators

 Programming environment.

A program generator generates a program which

performs a set of functions. User of a program generator

saves substantial design effort since a programmer

merely specifies what functions a program should

perform rather than how the function should be

implemented. A programming environment supports

program coding by incorporating awareness of the

programming language syntax and semantics in the

language editor.

1) Program Documentation

Most programming projects suffer from lack of up-

to-data documentation. Automatic documentation

tools are motivated by the desire to overcome this

efficiency. These tools work on the source program

to produce different forms of documentation, e.g.

flow charts, IO specifications showing files and

their records etc.

2) Program Translation, Linking and Loading

These steps require use of language processors.

3) Program Testing and Debugging

Important steps in program testing and debugging

are selection of test data for the program, analysis

of test results to detect errors and debugging.

Software tools to assist these steps come in the

following forms:

 Test data generators help the user in

selecting test data for his program.

 Automated test drives help in regression

testing; Regression testing is performed as

follows: Many steps of test data are

prepared for a program. These are given as

input to the test drivers. The driver selects

one set of test data at a time and organizes

execution of the program on the data.

 Debug monitors help in obtaining

information for localization of errors.

 Source code control systems help to keep

track of modifications in the source code.

4) Performance Tuning

Program efficiency depends on two factors- the

efficiency of the algorithm and the efficiency of its

coding. An optimizing compiler can improve

efficiency of the code but it cannot improve

efficiency of the algorithm. Only a program

designer can improve efficiency designer can

improve efficiency of an algorithm. A performance

tuning tool helps in identifying such parts, those

sections of a program which consume a

considerable amount of execution time. A profile

monitor is a software tool that collects information

regarding the execution behavior of a program.

5) Program Preprocessing

Program preprocessing techniques are used to

support static analysis of programs. Tools

generating cross reference listings and lists of

unreferenced symbols: test data generators and

documentation aids use this technique.

V. SOFTWARE TOOL FOR PROGRAM

DEVELOPMENT

A. EDITORS

These tools are mainly used to program entry and editing, as

a front ends Tool. The editor functions in two modes-

command mode and data mode. In command mode, it

accepts user commands specifying the editing function to be

performed. In the data mode, the user keys in the text to be

added to the file. Text Editors come in the following forms:

1) Line editors

2) Stream editors

3) Screen editors

4) Word processors

5) Structured editors

1) Line Editors:

The scope of edit operations in a line editor is limited to

a line of text. The line is designated positionally. e.g. by

specifying its serial number in the text, or contextually

e.g. by specifying a context which uniquely identifies it.

The primary advantage of line editors is their simplicity.

2) Stream editors:

A stream editor views the entire text as a stream of

characters. These permits edit operations to cross line

boundaries. Stream editors typically support character,

line and context oriented commands based on the current

editing context indicated by the positions of a text

pointers.

3) Screen Editors:

A line or stream editor does not display the text in the

manner it would appear if printed. A screen editor uses

the what you-see-is-what-you-get principle in editor

design. The screen editor displays a screen full of text at

a time. The user can move the cursor over the screen,

position it at the point where he desires to perform some

editing and proceed with the editing directly. Thus it is

possible to see the effect of an edit operation on the

screen. This i is very useful while formatting the text to

produce printed documents.

4) Word Processors:

Word processors are basically documents editor with

additional features to produce will formatted hard copy

output. Essential features of word processors are

Compiler Construction Tools

(IJSRD/Vol. 1/Issue 11/2014/0048)

All rights reserved by www.ijsrd.com 2497

commands for moving sections of text from one place to

another, merging of text, and searching and replacements

of words. Many word processors support a spell-check

option. WordStar is a popular editor of this class.

5) Structure Editors: A structure editors incorporates an

awareness of the structure of a document. This is useful

in browsing through a document e.g. if a programmer

wishes to edit a specific function in a program file. A

special class of structure editors, called syntax directed

editors, is used in programming environments.

VI. DEBUG MONITORS

A debug monitor is software which provides debugging

support for a program. The debug monitor executes the

program being debugged under its own control. This

provides execution efficiency during debugging. A debug

monitor can be made language independent, in which case it

can handle programs written in many languages.

Debug monitors provide the following facilities for dynamic

debugging:

1) Setting breakpoints in the program

2) Initiating a debug conversation when control

reaches a breakpoint.

3) Displaying values of variables

4) Assuming new values to variables

5) Testing user defined assertions and predicates

involving program variables.

The sequence of steps involved in dynamic debugging of a

program is as follows:

1) The user compiles the program under the debug

option. The compiler produces two files the

command code file and the debug information file.

2) The user activities the debug monitors and

indicates the name of a program to be debugged.

The debug monitor opens the compiled code and

debugs information files for the program.

3) The user specifies his debug requirements a list of

breakpoints and actions to be performed at

breakpoints. The debug monitor instruments the

program and builds a debug table containing the

pairs (statement number, debug action).

4) The instrumented program gets control and

executes up to a breakpoint.

5) The software interrupt is generated when the <SI

instn> is executed. Control is given to the debug

monitor who consults the debug table and performs

the debug actions specified for the breakpoint. A

debug concession is now opened during which the

user may issue some debug commands or modify

breakpoints and debug actions associated with

breakpoints. Control now returns to the

instrumented program.

6) Step – above two steps are repeated until the end of

the debug session.

VII. PROGRAMMING ENVIRONMENTS

A programming environment is a software system that

provides integrated facilities for program creation, editing,

execution, testing and debugging. It consists of the

following components:

1) A syntax directed editor

2) A language processor

3) A debug monitor

4) A dialog monitor

All components are accessed through the dialog monitor.

The syntax directed editor incorporates a front for the

programming language as a user keys in his program. The

editor performs syntax analysis and converts it into an

intermediate representation (IR), typically an abstract syntax

tree. The compiler (or interpreter) and the debug monitor

share the IR. If a compiler is used, it is activated after the

editor has converted a statement to IR. The compiler works

incrementally to generate code for the statement. Thus,

program execution or interpretation can be supported

immediately after the last statement has been input.

The dialog monitor may also provide other program

development and testing functions. For example, it may

permit a programmer to execute a partially completed

program. The programmer can be alerted if an undeclared

variable or an incomplete statement is encountered during

execution. The programmer can insert necessary

declarations or statements and resume execution. This

permits major interfaces in the program to be tested prior to

the development of a module. Some programming

environments also support reversible execution.

VIII. MACRO AND MACRO EXPANSION

Macros are used to provide a program generation facility

through macro expansion. Many languages provide built-in-

facilities for writing macros well known examples of these

are the higher level language PL/L, C, Ada and C++.

A macro is a unit of specification for program generation

through expansion. A macro consists of a name, a set of

formal parameters and a body of code. The use of a macro

name with a set of actual parameters is replaced by some

code generated from its body. This is called macro

expansion. Macros differ from subroutines in one

fundamental respect. Use of a macro name in the mnemonic

field of an assembly statements leads to its expansion.

IX. USER INTERFACES

A user interface (UI) plays a vital role in simplifying the

interaction of a user with an application. Classically, UI

functionalities have two important aspects issuing of

commands and exchange of data. Basically user interface is

a combination of menus; screen design, keyboard

commands and language which together create the way a

user interact with the system. User interface establishes the

dialog between the users and the computers the dialog

provides user friendly instructive approach to starting the

system, setting options, getting helps etc. use of menus,

hyperlinks, dialog boxes and drop down list provides a very

pleasant interface but design a programming are

complicated.

A UI can be visualized to consist of two components a

dialog manger and presentation manager.

 The dialog manager manages the conversation

between the user and the application. This involves

prompting the use for a command and transmitting

the command to the application.

 The presentation manager displays the data

Compiler Construction Tools

(IJSRD/Vol. 1/Issue 11/2014/0048)

All rights reserved by www.ijsrd.com 2498

produced by the application in an appropriate

manner on the user’s displays or printer device.

The following points should be kept in mind while

designing a user interface:

 Know the requirements of the users.

 Involve these users as much as possible in the

screen and dialog design.

 User interface must be helpful.

 The interface must be robust.

 It feasible graphical ion must be used.

 Test the user interface on actual users.

X. STRUCTURE OF USER INTERFACE

Fig. 1: Structure of User Interface

Figure shows a UI schematic using a standard graphics

package. The UI consists of two main components,

presentation manager and dialog manager.

 The presentation manager is responsible for

managing the user screen and for accepting data

and presenting results.

 The dialog manager is responsible for

interpretation user commands and implementing

them by invoking different modules of the

application code. The dialog manager is also

responsible for error messages and on line help

functions.

XI. DESIGNING USER INTERFACE

Designing the user interface involves the following steps:

1) Sketch the user interface dialogs.

2) Prototype the user interface.

3) Obtain user feedback.

4) If negative feedback is received, repeat steps 1 to 3

again.

User Interface design is an area of work in which user

should play a significant role. However he needs the

professional assistance of the system analyst. Following are

the three common method for data entry input:

1) Menu Method: A menu method is used to select

one out of many alternatives. Selecting a menu will

result in the appearance of related sub-menus.

2) Template Method: Templates are like forms on

computer screen. The user is requested to fill in the

form. Labeled fields are provided and user enters

data into the blank spaces.

3) Command Method: - In the command method the

computer asks the user for specific inputs. On

getting the input the computer may either ask for

further input or provide some output.

ACKNOWLEDGEMEN

I am heartily thankful to my Principal and my institute to

encourage me to do this research in this area and giving me

the opportunity to share this knowledge with others.

REFERENCES

[1] www.cse.iitd.ernet.in

[2] Principles_of_Compiler_Design.htm

[3] www.cs.usfca.edu/~galles/compilerdesign

[4] www.eis.mdx.ac.uk/staffpages/r_bornat/books/

compiling.pdf

[5] Compiler design by Aho Ullman

