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1. Introduction 
The domination related results have appeared in several articles like [1]. Generalizations 
of graphs like hypergraphs, semigraphs and others have also been considered by several 
authors [5,6]. Mixed domination provides a possibility of exploring the above structures 
further. The concept of vertices dominates edges and edges dominate vertices are studied 
by several authors. The concept of ve-domination was studied by Sampathkumar and 
others [2,4]. A vertex v  of a graph G  m-dominates an edge xy  if xy  is an edge of the 

subgraph induced by the vertices of the [ ]N v . A set S  of vertices is said to be a ve-

dominating set if every edge of the graph G is m-dominated by some vertex in S . This 
concept is well studied in [3]. 
 In this paper, we study this concept in the context of an operation called the 
vertex removal from a graph. We characterize a minimal ve-dominating set of a graph 
and also prove necessary and sufficient conditions under which the ve-domination 
number of a graph increases or decreases. 
 
2. Preliminaries and notations 
If G  is a graph then its vertex set will be denoted as ( )V G . For any subset S  of a set of 

vertices ( )V G , ( ) \V G S  is a subgraph of G  obtained by removing the vertices of S  

and all the edges incident to the vertices of S . If v  is a vertex of G  then \G v  denotes 
the subgraph of G  obtained by removing the vertex v  and all the edges incident to v . If 

( )v V G∈  then ( )N v = The set of all vertices adjacent to v  and [ ]N v = ( ) { }N v v∪ . 
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We consider only those graphs which are simple, undirected and having finite 
vertex set. 
 
Definition 1. (ve-dominating set) A set ( )S V G⊂  is a ve-dominating set if every edge 

of G is m-dominated by a vertex inS . 
 
Definition 2. (Minimal ve-dominating set) A ve-dominating set S  for a graph G  is said 

to be minimal ve-dominating set for G  if no proper subset 'S of S  is a ve-dominating 
set for the graph G . 
 
Definition 3. (Minimum ve-dominating set) A ve-dominating set of minimum cardinality 
is called minimum ve-dominating set. 
 
Definition 4. (ve-domination number) The ve-domination number for the graph G  is 
denoted by ( )ve Gγ  and is the cardinality of a minimum ve-dominating set.  

 
Definition 5. (Edge private neighbourhood of a vertex) Let G be a graph, ( )S V G⊂ and

v S∈ . Then edge private neighbourhood of v  with respect to S  is [ , ] prne v S ={

( )e E G∈ such that e  is an edge of the induced subgraph of the [ ]N v  bute  is not an 

edge of the induced subgraph of the closed neighbourhood of any other vertex ofS }. 
 
3. Main results 
Theorem 6. Let G be a graph and ( )v V G∈ . Then ( \ ) ( )ve veG v Gγ γ<  if and only if 

there is a minimum ve-dominating set S  containing v  such that [ , ]prne v S  is a non-

empty subset of all T = The set of all edges incident atv . 
Proof: Suppose ( \ ) ( )ve veG v Gγ γ< . Therefore v  is not an isolated vertex. Let 1S  be a 

minimum ve-dominating set of \G v . Then 1S  cannot be a ve-dominating set of G . So, 

there is an edge f  of G  which is not m-dominated by any vertex of 1S . We may note 

that one end vertex of this edge must be v . Note that the other end vertex of this edge is 
not in 1S . Let 1 { }S S v= ∪ . First we prove that S  is a ve-dominating set. Let e  be any 

edge of G . If e  is an edge of \G v  then e  is m-dominated by some vertex of 1S . If v  

is an end vertex of e  then e  is m-dominated by v . Thus from both the above it follows 
that cases e  is m-dominated by some vertex of S . Therefore S  is a ve-dominating set. 

Since 1S S> , S  is a minimum ve-dominating set of G andv S∈ .  Let 

[ , ]f prne v S∈ . Suppose no end vertex of f is v . Therefore f  is an edge of \G v . 

Therefore f  is m-dominated by some vertex u of 1S . This is a contradiction as 

[ , ]f prne v S∈ . Therefore f  is incident atv . 

Conversely, suppose that there is a minimum set S  containing v  such that 
[ , ]prne v S  is a non-empty subset of  T . Let 1 \ { }S S v= . Let f  be any edge of \G v . 



About ve-Domination in Graphs 

247 
 

Since no end vertex of f  is equal to v , f T∉ .Therefore, [ , ]f prne v S∉ . So, either f  
is not m-dominated by v  or if it is m-dominated byv  then it is also m-dominated by 
some other vertex of S . Supposef is not m-dominated by v . Since S is a ve-dominating 

set of G , f  is m-dominated by some other vertex u  of S . Then 1u S∈  and therefore 

f is m-dominated by some vertex of 1S . Suppose f  is m-dominated by v . Then f

must be m-dominated by some other vertex w of S . Since w v≠ , 1w S∈ .Thus f  is m-

dominated by some vertex of 1S . Therefore, 1S  is a ve-dominating set of \ .G v

Therefore, 1( \ ) ( )ve veG v S S Gγ γ≤ < = . Therefore, ( \ ) ( )ve veG v Gγ γ< .  

  
Corollary 7. Let G  be a graph and ( )v V G∈ . If ( \ ) ( )ve veG v Gγ γ< , then 

( \ ) ( ) 1ve veG v Gγ γ= − . 

Proof: Let 1S be a minimum ve-dominating set of \G v . Then 1S  cannot be a ve-

dominating set of G . Let 1 { }S S v= ∪ . Then S is a minimum ve-dominating set of G

and 1 1S S= + . That is ( ) ( \ ) 1ve veG G vγ γ= + . Therefore, ( \ ) ( ) 1ve veG v Gγ γ= − . 

          
Remark 8. The above corollary is also true for any graph which does not contain a 
triangle. For example, for any cycle nC  with 4n ≥  this corollary is true. 

 
In [3], Sampathkumar and others have mentioned that for a triangle free graph the 
concepts of vertex covering and ve-domination are the same. 
 
Proposition 9. Let G  be a graph which is a triangle free and let ( )v V G∈ . Let S  be a 

minimum ve-dominating set of G  such that v S∈  then ( \ ) ( ) .ve veG v Gγ γ<  

Proof: Since S  is a minimal ve-dominating set, [ , ]prne v S φ≠ . Let [ , ]e prne v S∈ . If 
e xy=  then it cannot be happen that x v≠  and y v≠  because this will gives rise to a 

triangle which cannot exist in G . Thus one end vertex of e must be v . Thus all the 
edges which are in the [ , ]prne v S  have one end vertex v . Therefore 

( \ ) ( ) .ve veG v Gγ γ<          

 
Corollary 10. Let T  be a tree,S be a minimum ve-dominating set of T  and let v S∈  
then ( \ ) ( ).ve veT v Tγ γ<        

 
Proposition 11. Let T  be a tree, v  be a pendant vertex and u  be its neighbour which is 
called a supporting vertex of v . Let S  be a minimum ve-dominating set of T . Then 
exactly one of u  and v  belongs to S . 
Proof: Suppose ,  u S v S∉ ∉ . Then the edge uv  is not m-dominated by any vertex of S  

because T  is a tree and therefore it does not contain a triangle. Therefore,  
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 or u S v S∈ ∈ . Suppose,  and .u S v S∈ ∈ Since S  is a minimal ve-dominating set, 
every vertex in S  must have a private edge neighbour but v  does not have any private 
edge neighbour as u S∈ . Thus we have a contradiction. Therefore, either 

 and u S v S∈ ∉ or  and uv S S∈ ∉ .      
 
Corollary 12. Let T  be a tree, v  be a pendant vertex and u  be its supporting vertex. 
Then, ( \ ) ( ).ve veT v Tγ γ<  

Proof: We need to show that there is a minimum ve-dominating set such that u S∈ . Let 
S  be a minimum ve-dominating set of T  and suppose,u S∉ . Then,v S∈ . Let 

( )1 \ { } { }S S v u= ∪ . Then 1S  is a minimum ve-dominating set of T containing u . 

Therefore, ( \ ) ( ) .ve veT u Tγ γ<        

Remark 13. Consider the cycle nC , if n  is odd then its ve-domination number is 
1

2

n +
. 

If we remove any vertex from this cycle then we get a path with 1n −  vertices and 1n −  

is even and its ve-domination number is 
1

2

n −
. Thus ve-domination number decreases. 

Similarly, if n  is an even the its ve-domination number is 
2

n
. If we remove any vertex 

from this cycle then we get a path with 1n −  vertices which is an odd number and its ve-

domination number is 
2

2

n −
. Thus, ve-domination number decreases in this case also. 

Thus we conclude that if nC  is cycle with 4n ≥  then for every vertex v , 

( \ ) ( ) .ve n ve nC v Cγ γ<       

 
Theorem 14. Let G  be graph and ( )v V G∈ . Then ( \ ) ( )ve veG v Gγ γ>  if and only if 

following three conditions are satisfied. 
(1) v is not an isolated vertex of G . 
(2) v S∈ , for every minimum ve-dominating set S of G . 
(3) There is no subset S  of \G v  such that ( )N v  intersects ( ) \V G S  with 

( )veS Gγ≤  and S is a ve-dominating set of \G v . 

Proof: First suppose that ( \ ) ( )ve veG v Gγ γ> . 

(1) If v  is an isolated vertex of G . Then, ( \ ) ( )ve veG v Gγ γ=  which is a 

contradiction. Therefore v  is not an isolated of G . 
(2) Suppose there is a minimum ve-dominating set S  such that v S∉ . Then S  is a 

ve-dominating set of \G v  and therefore, ( \ ) ( )ve veG v S Gγ γ≤ ≤ , which is a 

contradiction. Thusv S∈ , for every minimum ve-dominating set S  of G . 
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(3) Suppose there is a subset S  of ( )V G  such that ( ) ( ) \ ,  ( )veN v V G S S Gγ⊆ ≤  

and S  is a ve-dominating set of \G v . Then again ( \ ) ( )ve veG v S Gγ γ≤ ≤ , 

which is a contradiction. Therefore condition (3) is satisfied. 
Conversely, suppose condition (1), (2) and (3) are satisfied. First suppose that 

( \ ) ( )ve veG v Gγ γ= . Let  S  be any minimum ve-dominating set of \G v . First suppose 

that S  is a ve-dominating set of G . Then S  is a minimum ve-dominating set of G and
v S∉ , which contradicts condition (2). Thus S  is not a ve-dominating set of G . 

Therefore there is a neighbour u  of v  such that u S∉ . Then ( )( ) ( ) \N v V G S φ∩ ≠  

and S  is a ve-dominating set of \G vwith ( )veS Gγ≤ . This contradicts condition (3). 

Thus ( \ ) ( )ve veG v Gγ γ=  is not possible. Suppose,( \ ) ( )ve veG v Gγ γ< . Let S  be a 

minimum ve-dominating set of \G v . Since, ( )veS Gγ< . Therefore S  cannot be a ve-

dominating set of G . Therefore ( )N v  is not a subset of S  and thus 

( )( ) ( ) \N v V G S φ∩ ≠ , ( )veS Gγ≤  and S  is a ve-dominating set of \G v , which is a 

contradiction. Therefore ( \ ) ( )ve veG v Gγ γ<  is also not possible. Therefore 

( \ ) ( ) .ve veG v Gγ γ>     

 
Theorem 15. Let G  be a graph, ( )v V G∈  and suppose, ( \ ) ( )ve veG v Gγ γ> . If S  is a 

minimum ve-dominating set of G  then v S∈  and [ , ]prne v S  is contain at least two 
non-adjacent edges. 
Proof: Since ( \ ) ( )ve veG v Gγ γ> , by condition(2) of theorem 14, v S∈ . Also S  is a 

minimal ve-dominating set of G  and therefore, [ , ]prne v S φ≠ . If all the edges in the 

[ , ]prne v S are incident at v  then it follows that ( \ ) ( )ve veG v Gγ γ< , which is a 

contradiction. Therefore, there is an edge  ,  xy x v y v∋ ≠ ≠ and [ , ]xy prne v S∈ . 

Suppose xy  is the only edge such that [ , ]xy prne v S∈ and ,  x v y v≠ ≠ . Let 

( )1 \ { } { }S S v x= ∪ . Let e  be any edge of G . If e  is not m-dominated by v  then e  is 

m-dominated by some vertex z  in S  such that z v≠ . Then 1z S∈  and e  is m-

dominated by z . Suppose e  is again any edge of G . Suppose e  is m-dominated by v
but [ , ]e prne v S∉ . Then e  is m-dominated by some vertex  w S w v∈ ∋ ≠ . Then again 

it is clear that e is m-dominated by some vertex of 1S . Let e be any edge of G  such that 

if [ , ]e prne v S∈ and { }e xy∉ . Therefore one end vertex of e  must be v . Suppose that 
other end vertex of e  is equal to x  then e  is m-dominated by some vertex (namely x ) 
of 1S . If the other end vertex of e  is equal to y  then e vy=  and then e  is m-dominated 

by x  which is in 1S . Thus, we have proved that if e  is any edge of G  then e  is m-

dominated by some member of 1S . Therefore 1S is a minimum ve-dominating set of G  
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such that ,v S∉ which is a contradiction. Thus apart from xy  there is another edge f  

such that none of its end vertex is v and [ , ]f prne v S∈ . 

Suppose any two edges which are in the [ , ]prne v S are adjacent. Let 1 1x y  and 

2 2x y  be two edges which are in the [ , ]prne v S  and which do not have v  as an end 

vertex. Now, they are adjacent edges. Suppose 1 2x x= and 1 2y y≠ . Let 

( )1 1\ { } { }S S v x= ∪ . Let f  be any edge of G . If f  is not m-dominated by v  or f  is 

not in the [ , ]prne v S  then f  is m-dominated by some vertex of 1S . Suppose f  is in 

the [ , ]prne v S . First suppose v  is an end vertex off . Let w  be the other end vertex of 

f . If 1 2 1 2{ , , , }w x x y y∈  then f  is m-dominated by 1x . Suppose 1 2 1 2{ , , , }w x x y y∉  

then f vw=  is not adjacent to the edge 1 1x y and both these edges are in [ , ]prne v S  

which is a contradiction. Thus v  cannot be an end vertex of f then f zw= , for some 

vertex z v≠ . Then f  is an edge of G  such that f  is in the [ , ]prne v S  and none of its 

end vertex is v . Now f zw=  is adjacent to 1 1x y  and it is also adjacent to 2 2x y . 

Therefore, 1 2, { , }z w y y∈ . Therefore,zw  is m-dominated by 1x . Thus every edge of G  

is m-dominated by some vertex of 1S . Thus 1S  is a minimum ve-dominating set with 

1v S∉ , which is a contradiction. Thus the theorem is proved.     
 

4. Concluding remark 
In this paper, there is no restriction on the induced subgraph of the ve-dominating set. We 
may get new variants of ve-domination by requiring that the ve-dominating set is either 
an independent set or without isolated vertices or having isolate vertex and so on. 
Different condition will provide new directions for ve-domination in graphs. 
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