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Abstract 

We determine the energy of a graph obtained by means of graph 
operations on a given graph, and relate the energy of such a new graph 
with that of the given graph. 

1. Introduction 

For standard terminology and notations related to graph theory, we 
follow West [2] while for algebra we follow Lang [9]. 

Let G be a connected undirected simple graph with vertex set 
( ) { }...,,, 21 nvvvGV =  The adjacency matrix of G, denoted by ( ),GA  is 

defined as ( ) [ ]ijaGA =  such that 1=ija  if iv  is adjacent with ,jv  and 0 

otherwise. 
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If nλλλ ...,,, 21  are eigenvalues of G, then 
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The energy ( )GE  of a graph G is defined to be the sum of all absolute 

values of eigenvalues of G. The concept of graph energy was introduced by 
Gutman [4] in 1978. A brief account of graph energy can be found in 
Cvetković et al. [3] and Li et al. [10]. 

This concept traces the connection in the study of approximation of the 
total π -electron energy of a conjugated hydrocarbon in molecular chemistry. 
A conjugated hydrocarbon can be represented by a graph called molecular 
graph in which every carbon atom is represented by a vertex, carbon-carbon 
bond by an edge and hydrogen atoms are ignored. The study of molecular 
structure with the help of energy of its graph is categorized as chemical graph 
theory. 

The concepts like incidence energy [5], skew energy [1], distance energy 
[7] are also available in the literature. 

Let ,nmRA ×∈  .qpRB ×∈  Then the Kronecker product (or tensor 
product) of A and B is defined as the matrix 
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Proposition 1.1 [6]. Let mMA ∈  and .nMB ∈  Furthermore, let λ  be 
an eigenvalue of matrix A with corresponding eigenvector x and µ  be an 

eigenvalue of matrix B with corresponding eigenvector y. Then λµ  is an 

eigenvalue of BA ⊗  with corresponding eigenvector .yx ⊗  

2. Energy of m-splitting Graph 

Definition 2.1. The splitting graph ( )GS′  of a graph G is obtained by 
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adding to each vertex v a new vertex v′  such that v′  is adjacent to every 
vertex that is adjacent to v in G. 

Definition 2.2. The m-splitting graph ( )GSplm  of a graph G is obtained 

by adding to each vertex v of G new m vertices, say mvvvv ...,,,, 321  such 

that mivi ≤≤1,  is adjacent to each vertex that is adjacent to v in G. 

Theorem 2.3. ( )( ) ( ).41 GEmGSplE m +=  

Proof. Let nvvv ...,,, 21  be the vertices of the graph G. Then its 

adjacency matrix is given by 
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Let m
iii vvv ...,,, 21  be the vertices corresponding to each ,iv  which are added 

in G to obtain ( )GSplm  such that ( ) ( ) ( ) ( ),21
i

m
iii vNvNvNvN ====  

....,,2,1 ni =  Then ( )( )GSplA m  can be written as a block matrix as follows: 
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Let .
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A  Now we compute eigenvalues of matrix A. 

Since matrix A is of rank two, A has two nonzero eigenvalues, say 1µ  and 

.2µ  Obviously, 

( ) .121 ==µ+µ Atr  (1) 

Consider 
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Here, 

( ) .1222
2

2
1 +==µ+µ mAtr  (2) 

Solving two equations (1) and (2), we have 
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Since ( )( ) ( ),GAAGSplA m ⊗=  it follows that if nλλλ ...,,, 21  are 

eigenvalues of A, then by Proposition 1.1, 

( )( ) =GSplspec m  

.
111111

2
411

2
411

2
411

2
41100 111















−−

λ






 +−λ






 +−λ






 ++λ






 ++λλ

mm

mmmm
nnn  



Energy of m-splitting and m-shadow Graphs 1575 

Hence, 
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The following illustration gives better understanding of Theorem 2.3. 

Illustration 2.4. Consider cycle 4C  and ( ).42 CSpl  It is obvious that 

( ) 44 =CE  as ( ) .
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Figure 1 

Hence, 

( )( ) ( ) ( ).24112 442 CECSplE +==  



Samir K. Vaidya and Kalpesh M. Popat 1576 

Remark 2.5. For ,1=m  the graph is called splitting graph denoted by 
( ).GS′  It has been already proved by Vaidya and Popat [8] that ( )( ) =′ GSE  

( ).5 GE  

3. Energy of m-shadow Graph 

Definition 3.1. The shadow graph ( )GD2  of a connected graph G is 

constructed by taking two copies of G, say G′  and .G ′′  Join each vertex u′  
in G′  to the neighbors of the corresponding vertex u ′′  in .G ′′  

Definition 3.2. The m-shadow graph ( )GDm  of a connected graph G is 

constructed by taking m copies of G, say ,...,,, 21 mGGG  then join each 

vertex u in iG  to the neighbors of the corresponding vertex v in ,jG  

.,1 mji ≤≤  

Theorem 3.3. ( )( ) ( ).GmEGDE m =  

Proof. Let nvvv ...,,, 21  be the vertices of the graph G. Then its 
adjacency matrix is same as in the proof of Theorem 2.3. Consider m copies 

of a graph G, say mGGG ...,,, 21  with vertices nivvv m
iii ≤≤1,...,,, 21  to 

obtain ( )GDm  such that each vertex u in jG  is joined to the neighbors of the 

corresponding vertex v in .,1, mkjGk ≤≤  

Then the ( )( )GDA m  can be written as a block matrix as follows: 
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( ).GAJm ⊗=  
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Hence, by Proposition 1.1, 
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where iλ  are eigenvalues of G, while ( ), times10 −m  m are eigenvalues of 

.mJ  Here, 
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The following illustration helps us to understand Theorem 3.3. 

Illustration 3.4. Consider cycle 4C  and ( ).43 CD  From the previous 

example, it is known that ( ) 44 =CE  and ( ) .
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Figure 2 

Here, ( )( ) .
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Hence, 
( )( ) ( ) ( ).34312 443 CECDE ===  

Remark 3.5. For ,1=m  the graph is called shadow graph denoted        
by ( ).2 GD  It has been already proved by Vaidya and Popat [8] that 

( )( ) ( ).22 GEGDE =  
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4. Concluding Remarks 

The energy of standard graphs is available in the literature but we have 
investigated the energy of larger graph obtained from a given graph by 
means of graph operations. We have obtained very general results by 
considering two graph operations called m-splitting and m-shadow graphs. 

Acknowledgments 

The present work is a part of the research work carried out under Major 
Research Project No.: IQAC/GJY/MRP/OCT/2016/1670-A, dated: 4th Oct. 
2016 by Saurashtra University - Rajkot (Gujarat), India. 

The authors thank the anonymous referees for their valuable suggestions 
leading to the improvement of the original manuscript. 

References 

 [1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear 
Algebra Appl. 432 (2010), 1825-1835. 

 [2] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall of India, 2001. 

 [3] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph 
Spectra, Cambridge University Press, 2010. 

 [4] I. Gutman, The energy of a graph, Ber. Math. - Statist. Sekt. Forsch. Graz.               
103 (1978), 1-22. 

 [5] I. Gutman, D. Kiani, M. Mirazakhah and B. Zhou, On incidence energy of a 
graph, Linear Algebra Appl. 431 (2009), 1223-1233. 

 [6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University 
Press, Cambridge, 1991. 

 [7] S. B. Bozkurt, A. D. Gungor and I. Gutman, Note on distance energy of graphs, 
SIAM J. Discrete Math. 64 (2010), 129-134. 

 [8] S. K. Vaidya and K. M. Popat, Some new results on energy of graphs, MATCH 
Commun. Math. Comput. Chem. 77 (2017), 589-594. 

 [9] S. Lang, Algebra, Springer, New York, 2002. 

 [10] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012. 


