# Spectra of Graphs Obtained by Duplication of Graph Elements

Samir K Vaidya (Corresponding author)

Department of Mathematics, Saurashtra University Rajkot - 360 005, Gujarat, India

E-mail: samirkvaidya@yahoo.co.in

#### Kalpesh M Popat

Department of MCA, Atmiya University, Rajkot - 360 005, Gujarat, India E-mail:kalpeshmpopat@gmail.com

#### **Abstract**

The concept of graph energy is a frontier between two important branches of basic sciences: namely, Mathematics and Chemistry. The sum of absolute values of eigenvalues of adjacency matrix of graph is called the energy of a graph. The graph energy of some standard graphs is available in literature while we have investigated the energy of a graphs which are obtained from the duplication of graph elements (Vertex and Edge) in a given graph.

Keywords: Duplication, Eigenvalue, Energy of Graphs

AMS Subject Classification(2010): 05C50, 05C76

### 1 Introduction

All the graphs considered here are simple, finite, connected and undirected. For standard terminology and notations related to graph theory we follow West [2] while any terms related to algebra we rely upon Lang [12].

The adjacency matrix A(G) of G is defined as  $A(G) = [a_{ij}]$ , where  $a_{ij} = 1$  if  $v_i$  is adjacent with  $v_j$ , and 0 otherwise. The characteristic polynomial of the adjacency matrix of G is the characteristic polynomial of G, denoted by  $\phi(G:x)$ . The roots of the equation  $\phi(G:x) = 0$ , denoted by  $\lambda_1, \lambda_2, \dots, \lambda_n$  are said to be eigenvalues of G and their collection is the spectrum of G. Hence,

$$spec(G) = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ m_1 & m_2 & \cdots & m_n \end{pmatrix}$$

The energy of a graph G is the sum of absolute values of the eigenvalues of graph G and denoted by E(G). Hence,

$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

The concept of graph energy was introduced by Gutman [4] in 1978.

In chemistry the eigenvalues represents the energy levels of the electrons in a molecule of a conjugated hydrocarbon. A conjugated hydrocarbon can be represented by a graph called molecular graph in which every carbon atom is represented by a vertex, carbon-carbon bond by an edge and hydrogen atoms are ignored. The study of molecular structure with the help of energy of its graph is now termed as chemical graph theory. The total  $\pi$ -electron energy E is the sum of the energies of all electrons in a molecule. The total  $\pi$ -electron energy is same as the energy of molecule graph. Therefore, to investigate the energy of a graph is equivalent to find the total  $\pi$ -electron energy of a molecule.

A brief account of energy of graph can be found in Cvetkovič [3] and Li [13]. The concepts like Incidence energy [5], Skew energy [1], Distance energy [9] are also introduced in recent past.

Two non-isomorphic graphs  $G_1$  and  $G_2$  of the same order are said to be *equienergetic* if  $E(G_1) = E(G_2)$ . Two graphs are said to be co-spectral if they have same spectra. It is always challanging to find out non co-spectral equienergetic graphs because co-spectral graphs are obviously equienergetic. Balakrishnan [8] have proved that for any positive integer  $n \ge 3$ , there exist non co-spectral, equienergetic graphs of order 4n.

The *m*- splitting graph S  $pl_m(G)$  of a graph G is obtained by adding to each vertex v of G new m vertices, say  $v_1, v_2, v_3, \dots, v_m$  such that  $v_i, 1 \le i \le m$  is adjacent to each vertex that is adjacent to v in G.

The *m-shadow graph*  $D_m(G)$  of a connected graph G is constructed by taking *m* copies of G, say  $G_1, G_2, \dots, G_m$ , then join each vertex u in  $G_i$  to the neighbors of the corresponding vertex v in  $G_j$ ,  $1 \le i, j \le m$ .

Vaidya and Popat [10, 11] have proved that  $E(Spl_m(G)) = \sqrt{1 + 4m}E(G)$  and  $E(D_m(G)) = mE(G)$  as well as  $Spl_2(G)$  and  $D_3(G)$  are non-cospectral equienergetic.

A graph G is k-regular graph if for some positive integer k, d(v) = k, for each vertex v of the graph G.

Let G be a graph with n vertices, e edges, and no self loops. The incidence matrix B(G) of graph G is an  $n \times e$  matrix  $[b_{ij}]$  such that  $b_{ij} = 1$ , if  $j^{th}$  edge  $e_i$  is incident on  $i^{th}$  vertex  $v_i$ , and 0 otherwise.

Let  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{p \times q}$ . Then the *Kronecker product* (or tensor product) of A and B is defined as the matrix

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

**Proposition 1.1.** [7] If  $A \in \mathbb{R}^{n \times n}$  and  $B \in \mathbb{R}^{n \times n}$  be invertible matrices then

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

**Proposition 1.2.** [7, 6] Let  $M, N, P, Q \in \mathbb{R}^{n \times n}$  be matrices, Q be invertible and

$$S = \begin{bmatrix} M & N \\ P & Q \end{bmatrix}$$

then, det S = det Q.  $det \left[ M - NQ^{-1}P \right]$ 

## 2 Main Results

**Definition 2.1.** Duplication of a vertex  $v_k$  by a new edge e = v'v'' in a graph G produces a new graph  $G_1$  such that  $N(v') = \{v_k, v''\}$  and  $N(v'') = \{v_k, v''\}$ .

**Theorem 2.2.** Let G be a graph with eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$  and  $G_1$  be the graph obtained from G by duplicating each vertex of G by a new edge then

$$E(G_1) = n + \sum_{\lambda_i < 2} \sqrt{\lambda_i^2 - 2\lambda_i + 9} + \sum_{\lambda_i > 2} (\lambda_i + 1)$$

**Proof**: Let  $v_1, v_2, \dots, v_n$  be the vertices of a graph G then the adjacency matrix A(G) is given by

$$A(G) = \begin{bmatrix} \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} & \cdots & \mathbf{v_n} \\ \mathbf{v_1} & 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ \mathbf{v_2} & a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{v_n} & a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{bmatrix}$$

We duplicate the vertices  $v_1, v_2, \dots, v_n$  all together by the edges  $e_1, e_2, \dots, e_n$  respectively such that,  $e_1 = v_1' v_1'', e_2 = v_2' v_2'', \dots, e_n = v_n' v_n''$  to obtain graph  $G_1$ 

The adjacency matrix of  $G_1$  is given by in terms of block matrix as follow

Let 
$$B = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

Then.

$$A(G_1) = \begin{bmatrix} A(G) & B \\ B^T & I_n \otimes A(K_2) \end{bmatrix}$$

The characteristic polynomial of above matrix is given by

$$\begin{split} \phi(G_1:x) &= |xI_{3n} - A(G_1)| \\ &= \begin{vmatrix} xI_n - A(G) & B \\ B^T & I_n \otimes (xI_2 - A(K_2)) \end{vmatrix} \\ &= |I_n \otimes (xI_2 - A(K_2))| |xI_n - A(G) - B(I_n \otimes (xI_2 - A(K_2)))^{-1} B^T| \\ &= (x^2 - 1)^n |xI_n - A(G) - B((xI_2 - A(K_2))^{-1} \otimes I_n^{-1}) B^T| \\ &= (x^2 - 1)^n |xI_n - A(G) - B\left(\frac{1}{x^2 - 1}(xI_2 + A(K_2)) \otimes I_n\right) B^T| \\ &= |(x^2 - 1)(xI_n - A(G)) - B((xI_2 + A(K_2)) \otimes I_n) B^T| \end{split}$$

Now,

$$B((xI_2 + A(K_2)) \otimes I_n)B^T = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix} \begin{bmatrix} x & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & x & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & x & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & x & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= \begin{bmatrix} x + 1 & x + 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & x + 1 & x + 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & x + 1 & x + 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2x + 2 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2x+2 & 0 & 0 & \cdots & 0 \\ 0 & 2x+2 & 0 & \cdots & 0 \\ 0 & 0 & 2x+2 & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 2x+2 \end{bmatrix}$$
$$= (2x+2)I_n$$

Continuing proof of theorem

$$\phi(G_1:x) = |(x^2 - 1)(xI_n - A(G)) - B((xI_2 + A(K_2)) \otimes I_n)B^T|$$
  
= |(x^2 - 1)(xI\_n - A(G)) - (2x + 2)I\_n)|

It follows that if  $\lambda_1, \lambda_2, \dots, \lambda_n$  are eigenvalues of A then

$$\phi(G_1:x) = \prod_{i=1}^n \left[ (x^2 - 1)(x - \lambda_i) - (2x + 2) \right]$$

$$= \prod_{i=1}^n \left[ (x - 1)(x + 1)(x - \lambda_i) - 2(x + 1) \right]$$

$$= (x + 1)^n \prod_{i=1}^n \left( x^2 - x\lambda_i - x + \lambda_i - 2 \right)$$

The roots of above characteristic polynomial are

$$x = -1(n \text{ times}), \ x = \frac{(\lambda_i + 1) \pm \sqrt{\lambda_i^2 - 2\lambda_i + 9}}{2}$$

For each  $i = 1, 2, \dots, n$ Hence,

$$spec(G_{1}) = \begin{pmatrix} -1 & \frac{(\lambda_{1}+1) + \sqrt{\lambda_{1}^{2} - 2\lambda_{1} + 9}}{2} & \cdots & \frac{(\lambda_{n}+1) + \sqrt{\lambda_{n}^{2} - 2\lambda_{n} + 9}}{2} \\ n & 1 & \cdots & 1 \\ \\ \frac{(\lambda_{1}+1) - \sqrt{\lambda_{1}^{2} - 2\lambda_{1} + 9}}{2} & \frac{(\lambda_{2}+1) - \sqrt{\lambda_{2}^{2} - 2\lambda_{2} + 9}}{2} & \cdots & \frac{(\lambda_{n}+1) - \sqrt{\lambda_{n}^{2} - 2\lambda_{n} + 9}}{2} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

The calculation of energy considers only positive eigenvalues. For the graph under consideration, the positivity of eigenvalues depends upon the value  $(\lambda_i + 1) - \sqrt{\lambda_i^2 - 2\lambda_i + 9}$ . This give rise to following two possibilities.

$$(\lambda_i + 1) \le \sqrt{\lambda_i^2 - 2\lambda_i + 9}$$
 if  $\lambda_i \le 2$   

$$(\lambda_i + 1) > \sqrt{\lambda_i^2 - 2\lambda_i + 9}$$
 if  $\lambda_i > 2$ 

Here,

$$E(G_1) = \sum_{i=1}^{3n} |\lambda_i|$$

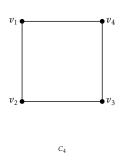
$$= \sum_{i=1}^{n} |-1| + \sum_{i=1}^{n} \left| \frac{(\lambda_i + 1) + \sqrt{\lambda_i^2 - 2\lambda_i + 9}}{2} \right| + \sum_{i=1}^{n} \left| \frac{(\lambda_i + 1) - \sqrt{\lambda_i^2 - 2\lambda_i + 9}}{2} \right|$$

$$= n + \sum_{\lambda_{i} \leq 2}^{n} \left[ \frac{(\lambda_{i} + 1) + \sqrt{\lambda_{i}^{2} - 2\lambda_{i} + 9}}{2} + \frac{\sqrt{\lambda_{i}^{2} - 2\lambda_{i} + 9} - (\lambda_{i} + 1)}{2} \right]$$

$$+ \sum_{\lambda_{i} \geq 2}^{n} \left[ \frac{(\lambda_{i} + 1) + \sqrt{\lambda_{i}^{2} - 2\lambda_{i} + 9}}{2} + \frac{(\lambda_{i} + 1) - \sqrt{\lambda_{i}^{2} - 2\lambda_{i} + 9}}{2} \right]$$

$$= n + \sum_{\lambda_{i} \leq 2} \sqrt{\lambda_{i}^{2} - 2\lambda_{i} + 9} + \sum_{\lambda_{i} \geq 2} (\lambda_{i} + 1)$$

**Illustration 2.3.** Consider cycle  $C_4$  and a graph (say  $G_1$ ) obtained from  $C_4$  by duplicating each vartex by an edge. It is obvious that  $E(C_4) = 4$  as  $\operatorname{spec}(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ 



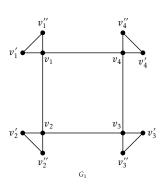


Figure 1:

Therefore,

$$spec(G_1) = \begin{pmatrix} \frac{-1+\sqrt{17}}{2} & \frac{-1-\sqrt{17}}{2} & 3 & 2 & -1 & 0 \\ 1 & 1 & 1 & 2 & 6 & 1 \end{pmatrix}$$

The following table compares spectrum of  $C_4$  and  $G_1$ 

|     |    |   | -1  |   |
|-----|----|---|-----|---|
| Ta  | h  | Α | - 1 | • |
| 1 a | ., |   |     |   |

| spectrum of $C_4$ | spectrum of $G_1 = \frac{(\lambda_i + 1) \pm \sqrt{\lambda^2 - 2\lambda + 9}}{2}$ |
|-------------------|-----------------------------------------------------------------------------------|
| $\lambda_1 = -2$  | $\frac{-1+\sqrt{17}}{2}, \frac{-1-\sqrt{17}}{2}$                                  |
| $\lambda_2 = 2$   | 0, 3                                                                              |
| $\lambda_3 = 0$   | 2, -1                                                                             |

**Definition 2.4.** Duplication of an edge  $e = v_i v_{i+1}$  by a vertex v' in a graph G produces a new graph  $G_1$  such that  $N(v') = \{v_i, v_{i+1}\}$ .

**Theorem 2.5.** Let G be a k- regular graph with eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$  and  $G_1$  be the graph obtained from G by duplicating each edge of G by a new vertex then

$$E(G_1) = \sum_{i=1}^{n} \sqrt{\lambda_i^2 + 4(\lambda_i + k)}$$

**Proof**: Let  $v_1, v_2, \dots, v_n$  be the vertices and  $e_1, e_2, \dots, e_m$  be the edges of k-regular graph G then the adjacency matrix A(G) and incidence matrix X(G) are given by

We duplicate the edges  $e_1, e_2, \dots, e_m$  all together by the vertices  $e'_1, e'_2, \dots, e'_m$  respectively to obtained a graph  $G_1$ 

The adjacency matrix of  $G_1$  is given by in terms of block matrix as follow

That is,

$$A(G_1) = \begin{bmatrix} A(G) & B(G) \\ B(G)^T & O_n \end{bmatrix}$$

The characteristic polynomial of above matrix is given by

$$\phi(G_1 : x) = |xI_{n+m} - A(G_1)|$$

$$= \begin{vmatrix} xI_n - A(G) & B(G) \\ B(G)^T & xI_m \end{vmatrix}$$

$$= |xI_m||xI_n - A(G) - B(G)(xI_m)^{-1}B(G)^T|$$

$$= x^m |xI_n - A(G) - \frac{1}{x}B(G)B(G)^T|$$

$$= x^{m-n}|x^2I_n - xA(G) - (A + kI_n)|$$

It follows that if  $\lambda_1, \lambda_2, \dots, \lambda_n$  are eigenvalues of A then

$$\phi(G_1:x) = x^{m-n} \prod_{i=1}^n \left( x^2 - x\lambda_i - (\lambda_i + k) \right)$$

The roots of above characteristic polynomial are

$$x = 0(m - n \text{ times}), \ x = \frac{\lambda_i \pm \sqrt{\lambda_i^2 + 4(\lambda_i + k)}}{2}$$

For each  $i = 1, 2, \dots, n$ Hence,

$$spec(G_1) = \begin{pmatrix} 0 & \frac{\lambda_1 + \sqrt{\lambda_1^2 + 4(\lambda_1 + k)}}{2} & \cdots & \frac{\lambda_n + \sqrt{\lambda_n^2 + 4(\lambda_n + k)}}{2} & \frac{\lambda_1 - \sqrt{\lambda_1^2 + 4(\lambda_1 + k)}}{2} & \cdots & \frac{\lambda_n - \sqrt{\lambda_n^2 + 4(\lambda_n + k)}}{2} \\ m - n & 1 & \cdots & 1 & 1 & \cdots & 1 \end{pmatrix}$$

For Any eigenvalue  $\lambda$  of k- regular graph

$$-k \le \lambda \le k$$

$$\Rightarrow \lambda \ge -k$$

$$\Rightarrow \lambda + k \ge 0$$

$$\Rightarrow 4(\lambda + k) \ge 0$$

$$\Rightarrow \lambda^2 - (\lambda^2 + 4(\lambda + k)) \le 0$$

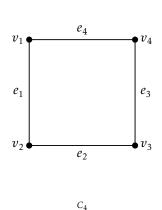
$$\Rightarrow \lambda^2 \le (\lambda^2 + 4(\lambda + k))$$

$$\Rightarrow \lambda < \sqrt{(\lambda^2 + 4(\lambda + k))}$$

Now,

$$E(G_1) = \sum_{i=1}^{n} \left| \frac{\lambda_i + \sqrt{\lambda_i^2 + 4(\lambda_i + k)}}{2} \right| + \sum_{i=1}^{n} \left| \frac{\lambda_i - \sqrt{\lambda_i^2 + 4(\lambda_i + k)}}{2} \right|$$
$$= \sum_{i=1}^{n} \left( \frac{\lambda_i + \sqrt{\lambda_i^2 + 4(\lambda_i + k)}}{2} + \frac{\sqrt{\lambda_i^2 + 4(\lambda_i + k)} - \lambda_i}{2} \right)$$
$$= \sum_{i=1}^{n} \sqrt{\lambda_i^2 + 4(\lambda_i + k)}$$

**Illustration 2.6.** Consider cycle  $C_4$  and a graph (say  $G_1$ ) obtained from  $C_4$  by duplicating each edge by vertex. It is obvious that  $E(C_4) = 4$  as  $\operatorname{spec}(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ 



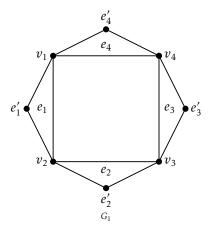


Figure 2:

$$A(G_1) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & e'_1 & e'_2 & e'_3 & e'_4 \\ v_1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ v_2 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ v_3 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ v_4 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ e'_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ e'_2 & e'_3 & e'_4 & 1 & 0 & 0 & 0 & 0 & 0 \\ e'_4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore,

$$spec(G_1) = \begin{pmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} & -\sqrt{2} & \sqrt{2} & -2 & 0 \\ 1 & 1 & 2 & 2 & 1 & 1 \end{pmatrix}$$

The following table compares spectrum of  $C_4$  and  $G_1$ 

| Table 2:                   |                                                                                    |  |  |
|----------------------------|------------------------------------------------------------------------------------|--|--|
| spectrum of C <sub>4</sub> | <b>spectrum of</b> $G_1 = \frac{\lambda \pm \sqrt{\lambda^2 + 4(\lambda + k)}}{2}$ |  |  |
| $\lambda_1 = -2$           | -2, 0                                                                              |  |  |
| $\lambda_2 = 2$            | $1 + \sqrt{5}, 1 - \sqrt{5}$                                                       |  |  |
| $\lambda_3 = 0$            | $\sqrt{2}$ , $-\sqrt{2}$                                                           |  |  |

# **3 Concluding Remarks**

This work is an effort to obtain the energy of a graph which is a supergraph of a given graph. To construct a supergraph we consider the duplication of graph elements. We have investigated the energy of graphs obtained by duplication of vertex by edge as well as edge by vertex. We have found that it is possible to express the energy of newly constructed supergraph in terms of eigenvalues of the graph under consideration.

# 4 Acknowledgement

The authors are highly thankful to the anonymous referee for valuable suggestions on the first draft of this paper.

### References

- [1] C. Adiga, R. Balakrishnan and W. So, *The skew energy of a digraph*, Linear Algebra Appl. 432(2010), 1825-1835.
- [2] D. B. West, *Introduction to Graph Theory*, 2/e, Prentice Hall of India, 2001.
- [3] D. Cvetkovič, P. Rowlison and S. Simič, *An Introduction to the Theory of Graph Spectra*, Cambridge university press, 2010.
- [4] I. Gutman, *The energy of a graph*, Ber. Math. Statist. Sekt. Forsch-ungszentram Graz., 103 (1978) 1 22.
- [5] I. Gutman, D. Kiani, M. Mirazakhah and B. Zhou, *On incidence energy of a graph*, Linear Algebra Appl. 431(2009), 1223-1233.
- [6] F. Z. Zhang, The Schur Complement and Its Applications, Springer, 2005.
- [7] R. A. Horn and C. R. Johnson, *Topics In Matrix Analysis*, Cambridge University Press, Cambridge, 1991.

- [8] R. Balakrishnan, The Energy of a graph, Linear Algebra Appl., 387 (2004) 287 295.
- [9] S. B. Bozkurt, A. D. Gungor and I. Gutman, *Note on distance energy of graphs*, SIAM J. Discrete Math. 64(2010), 129-134.
- [10] S. K. Vaidya and K. M. Popat, *Energy of m– Splitting and m– Shadow Graphs*, Far East Journal of Mathematical Sciences, 102 (2017), 1571-1578.
- [11] S. K. Vaidya and K. M. Popat, *Equienergetic, Hyperenergetic and Hypoenergetic Graphs*, Kragujevac Journal of Mathematics, 44(2020), 523-532.
- [12] S. Lang, Algebra, Springer, New York, 2002.
- [13] X. Li, Y. Shi and I. Gutman, Graph energy, Springer, New York, 2012.