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Abstract: The eigenvalue of a graph G is the eigenvalue of its adjacency matrix
and the energy E(G) of graph G is the sum of absolute values of its eigenvalues.
Two non-isomorphic graphs G1 and G2 of the same order are said to be equiener-
getic if they have same energies. The complement of a graph G is the graph G
with vertex set V (G) = V (G) and two vertices are adjacent in G if and only if they
are not adjacent in G. In the present work three pairs of equienergetic graphs have
been obtained using graph complement.
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1. Introduction and Preliminaries

All the graphs considered here are simple, finite and undirected. For standard
terminology and notations related to graph theory we follow Balakrishnan and
Ranganathan [2] while for the concept related to algebra, we follow Lang [7]. Let
G be a simple graph with vertex set V (G) = {v1, v2, · · · , vn}.
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The adjacency matrix A(G) of a graph G with vertices v1, v2, · · · , vn is an n×n
matrix [aij] such that,

aij = 1, if vi is adjacent with vj

= 0, otherwise

The eigenvalues of adjacency matrix of graph G are known as eigenvalues of
graph. The collection of eigenvalues of the graph with their multiplicities is known
as spectrum of the graph. If λ1, λ2, · · · , λk are the distinct eigenvalues of G with
respective multiplicities m1,m2, · · · ,mk, then the spectrum of G is denoted by,

spec(G) =

(
λ1 λ2 · · · λk

m1 m2 · · · mk

)
,where

k∑
i=1

mi = n

Two non-isomorphic graphs are said to be cospectral if they have the same
spectra, otherwise they are known as non-cospectral. The energy E(G) of a graph
G is the sum of absolute values of the eigenvalues of graph G.
Hence,

E(G) =
n∑

i=1

|λi|

The concept of energy was introduced by Gutman [6]. A brief account of energy
of graph can be found in Cvetković et al. [5] and Li et al. [8]. Two non-isomorphic
graphs G1 and G2 of same order are said to be equienergetic if E(G1) = E(G2).
Obviously, co-spectral graphs are always equienergetic. Balakrishnan and Ran-
ganathan [2] showed the existence of non-cospectral equienergetic graphs. In 2005
Stevanović [12] constructed eqienergetic graphs of order p ≡ 0(mod5). A systematic
computer aided study have been carried out for equienergetic trees by Brankov et al.
[3] and Milijkoić et al. [9]. Vaidya et al. [13, 14] have obtained some new classes of
equienergetic graph using various graph operations.

The complement of a graph G is the graph G with vertex set V (G) = V (G)
and two vertices are adjacent in G if and only if they are not adjacent in G. A
graph G with G ∼= G is called self- complementary graph. Recently, Ramane et al.
[10] have obtained non self-complementary graphs for which E(G) = E(G). Such
graphs are known as complementary equienergetic graphs. By the computer aided
search Akabar Ali et al. [1] investigated complementary equienergetic graphs of
order at most 10.

Proposition 1.1. [11] Let G be an r-regular graph of order n with the eigenvalues
r, λ1, λ2, · · · , λn. Then the eigenvalues of G are n− r − 1,−λ2 − 1, · · · ,−λn − 1.
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Definition 1.2. The Cartesian product of graphs G and H is a graph, denoted
as G×H, whose vertex set is V (G)× V (H). Two vertices (u1, v1) and (u2, v2) in
G×H are adjacent if u1 = u2 and v1 and v2 are adjacent in H or v1 = v2 and u1

and u2 are adjacent in G.

Definition 1.3. The Kronecker product of G and H is denoted by G ⊗ H with
vertex set V (G)×V (H) and two vertices(u1, v1) and (u2, v2) in G⊗H are adjacent
if and only if u1 and u2 are adjacent in G as well as v1 and v2 are adjacent in H.

Proposition 1.4. [2] If λ1, λ2, · · · , λn are the eigenvalues of G and µ1, µ2, · · · , µm

are the eigenvalues of H, then

i the eigenvalues of G×H are λi + µj , i = 1, 2, · · · , n; j = 1, 2, · · · ,m.

ii the eigenvalues of G⊗H are λiµj , i = 1, 2, · · · , n; j = 1, 2, · · · ,m.

Definition 1.5. The shadow graph D2(G) of a connected graph G is constructed
by taking two copies of G say G′ and G′′. Join each vertex u′ in G′ to the neighbors
of the corresponding vertex u′′ in G′′.

Definition 1.6. The extended shadow graph D∗
2(G) of a connected graph G is

constructed by taking two copies of G say G′ and G′′. Join each vertex u′ in G′ to
the neighbours of the corresponding vertex u′′ and with u′′ in G′′.

If G is a graph of order n then D2(G) and D∗
2(G) are graphs of order 2n and, if

G is an r-regular graph then D2(G) and D∗
2(G) are also regular graphs with degrees

2r and 2r + 1 respectively.

Proposition 1.7. [13] If λ1, λ2, · · · , λn are eigenvalues of G then 2n eigenvalues
of D2(G) are 2λ1, 2λ2, · · · , 2λn, 0 (n times).

Proposition 1.8. [14] If λ1, λ2, · · · , λn are eigenvalues of G then 2n eigenvalues
of D∗

2(G) are 2λ1 + 1, 2λ2 + 1, · · · , 2λn + 1,−1(n times).

Definition 1.9. Let G be a graph with the vertex set V (G) = {v1, v2, · · · , vn}. The
extended bipartite double graph, Ebd(G) of a graph G is the bipartite graph with its
partite sets X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn} in which two vertices xi

and yj are adjacent if i = j or vi and vj are adjacent in G.

If G is a graph of order n then Ebd(G) is of order 2n and, if G is an r-regular
graph then Ebd(G) is an (r + 1)-regular graph.

Proposition 1.10. [4] Let G be a graph of order n with eigenvalues λ1, λ2, · · · , λn.
Then the eigenvalues of extended bipartite double graph Ebd(G) are ±(λ1+1),±(λ2+
1), · · · ± (λn + 1).



96 South East Asian J. of Mathematics and Mathematical Sciences

2. Main Results

Theorem 2.1. If G ≇ Kn is such that regular graph then

E(Ebd(G)) = E(G×K2) = E(G⊗K2)

Proof. Let G be an r-regular graph with eigenvalues r, λ2, λ2, · · · , λn. Therefore,
by Proposition 1.1 the eigenvalues ofG are n−r−1,−λ2−1, · · · ,−λn−1. According
to Proposition 1.10 and Proposition 1.4, the spectra of Ebd(G), G×K2 and G⊗K2

are respectively

Spec(Ebd(G)) =

(
r + 1 λ2 + 1 · · · λn + 1 −(r + 1) −(λ2 + 1) · · · −(λn + 1)
1 1 · · · 1 1 1 · · · 1

)

Spec(G×K2) =

(
r + 1 λ2 + 1 · · · λn + 1 r − 1 λ2 − 1 · · · λn − 1
1 1 · · · 1 1 1 · · · 1

)
Spec(G⊗K2) =

(
n− r − 1 −λ2 − 1 · · · −λn − 1 −n+ r + 1 λ2 + 1 · · · λn + 1

1 1 · · · 1 1 1 · · · 1

)
Again, by Proposition 1.1

Spec(Ebd(G)) =

(
2n− r − 2 −λ2 − 2 · · · −λn − 2 r λ2 · · · λn

1 1 · · · 1 1 1 · · · 1

)

Spec(G×K2) =

(
2n− r − 2 −λ2 − 2 · · · −λn − 2 −r −λ2 · · · −λn

1 1 · · · 1 1 1 · · · 1

)
Spec(G⊗K2) =

(
n+ r λ2 · · · λn n− r − 2 −λ2 − 2 · · · −λn − 2
1 1 · · · 1 1 1 · · · 1

)
Thus,

E(Ebd(G)) = E(G×K2) = E(G⊗K2) = 2n− 2 +
n∑

i=2

(|λi|+ |λi + 2|)

Theorem 2.2. If G is an r− regular graph then

E(D∗
2(G)) = E(G⊗K2)

Proof. Let G be a regular graph with eigenvalues r, λ2, λ2, · · · , λn. Therefore, by
Proposition 1.1 the eigenvalues of G are n− r− 1,−λ2 − 1,−λ3 − 1, · · · ,−λn − 1.
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According to Proposition 1.4 and Proposition 1.8, the spectra of G⊗K2 and D∗
2(G)

are respectively,

Spec(G⊗K2) =

(
n− r − 1 −λ2 − 1 · · · −λn − 1 −(n− r − 1) λ2 + 1 · · · λn + 1

1 1 · · · 1 1 1 · · · 1

)
and

Spec(D∗
2(G)) =

(
2r + 1 2λ2 + 1 · · · 2λn + 1 −1

1 1 · · · 1 n

)
Therefore, by Proposition 1.1 the spectrum of D∗

2(G) is,

Spec(D∗
2(G)) =

(
2n− 2r − 2 −2λ2 − 2 · · · −2λn − 2 −2λn − 2 0

1 1 · · · 1 1 n

)
Hence,

E(D∗
2(G)) = 2n− 2r − 2 + 2

n∑
i=2

|λi + 1| = E(G⊗K2)

Remark 2.3. In [08], it was proved that E(D2) = 2E(G). Thus, If G is self
complementary euienergetic graph then E(G) = E(G).

⇒ r +
n∑

i=2

|λi| = n− r − 1 +
n∑

i=2

|λi + 1|

In this case, E(D∗
2(G)) = E(G⊗K2) = 2(E(G)) = E(D2(G))

Theorem 2.4. If G is an r− regular graph with n vertices then

E(Ebd(G)) = E(G×K2)

Proof. Let G be a regular graph with eigenvalues r, λ2, · · · , λn. Therefore, by
Proposition 1.1 the eigenvalues of G are n−r−1,−λ2−1, · · · ,−λn−1. By Propo-
sition 1.10 and Proposition 1.4, spectra of Ebd(G) and G×K2 are respectively,

Spec(Ebd(G)) =

(
n− r −λ2 · · · −λn −(n− r) λ2 · · · λn

1 1 · · · 1 1 1 · · · 1

)

Spec(G×K2) =

(
n− r −λ2 · · · −λn n− r − 2 −λ2 − 2 · · · −λn − 2
1 1 · · · 1 1 1 · · · 1

)
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Thus, by Proposition 1.1,

Spec(Ebd(G)) =

(
n+ r − 1 λ2 − 1 · · · λn − 1 n− r − 1 −λ2 − 1 · · · −λn − 1

1 1 · · · 1 1 1 · · · 1

)
and

Spec(G×K2) =

(
n+ r − 1 λ2 − 1 · · · λn − 1 −n+ r + 1 λ2 + 1 · · · λn + 1

1 1 · · · 1 1 1 · · · 1

)
Now,

E(G⊗K2) = 2n− 2 +
n∑

i=2

|λi − 1|+
n∑

i=2

|λi + 1| = E(Ebd(G))

3. Conclusion
The concept of graph energy have drawn attention of many researchers due to

its applications in chemistry. We have investigated some new families equienergetic
graphs using graph complement.
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