Available online at www.joac.info

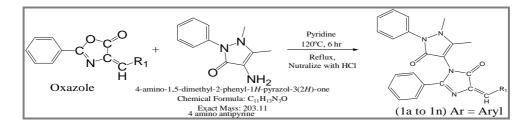
ISSN: 2278-1862

Journal of Applicable Chemistry 2019, 8 (1): 107-111

(International Peer Reviewed Journal)

Synthesis and Antimicrobial Activity of 2-{[(4'-Arylidine-5'oxo-2' phenyl) Imidazolyl]-1'-Yl}-3-Keto-1,5-Dimethyl-2-Phenyl Pyrazole

G. V.Vagadiya¹, D. M.Purohit² and S. B.Koradiya³*


 Department of Industrial Chemistry, Atmiya University, Rajkot-5, Gujarat, INDIA
Shree M. and N. Virani Science College, Kalawad Road, Rajkot-5, Gujarat, INDIA
Department of Chemistry, Atmiya University, Rajkot-5, Gujarat, INDIA Email: govindvsoni@gmail.com

Accepted on 16th January, 2019

ABSTRACT

5-Oxo-imidazoline derivatives exhibited good therapeutic activity, with a view of getting to synthesis $2-\{[(4'-arylidine-5'oxo-2'phenyl) imidazolyl]-1'-yl\}-3-keto-1,5-dimethyl-2-phenyl pyrazole (1a–1n) have been synthesized, all the synthesized compounds were characterized by TLC, IR, ¹H NMR, Mass spectral data. All the synthesized compounds (1a–1n) were screened for their antimicrobial activity at 40 µg concentration.$

Graphical Abstract

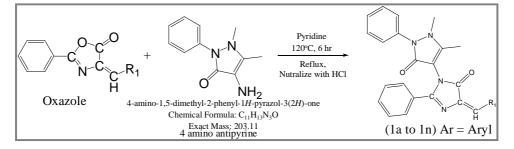
Keywords: 5-Oxo-imidazolines, Antimicrobial activities.

INTRODUCTION

5-Oxo-imidazoline derivatives shows good therapeutic activities like bacterial [1-4], anticonvulsant [5-7], potent CNS depressant activity [8, 9] sedative and hyonotic [10], hypotensive[11, 12] Local anesthetic[13], antineoplastic [14], antihistamine[15], antipyretic and analgesic[16, 17], anti-inflammatory [18, 19] etc. 2-{[(4'-arylidine-5'oxo-2'phenyl) imidazolyl]-1'-yl}-3-keto-1,5-dimethyl-2-phenyl pyrazole (1a–1n) have been synthesized by the condensation of 4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one with different azalctones or oxazolones in presence of pyridine.

The structures of the synthesized compounds were assigned based on elemental analysis, TLC, IR, ¹H NMR and mass spectral analysis. The antibacterial and antifungal activity was assayed by cupplate method [25]. All the synthesized compounds evaluated their antibacterial activity against Gram +ve bacteria *B. subtilis, S.aureus* whereas Gram –ve bacteria against *E.coli, P. aeruginosa*. Antifungal 107 activity towards *A. niger* Antimicrobial activity taken at 40 μ g concentration by cup-plate method. Zone of inhibition is in mm. Antimicrobial activity of synthesized compounds (1a–1n) was compared with known standard drugs e.g. Ampicillin, Chloramphenicol, Norfloxacin and Griseofulvin at some concentration.

MATERIALS AND METHODS


Melting points were taken in open glass capillary tubes are uncorrected. IR spectra (cm⁻¹) were recorded on Shimadzu-435-IR Spectrophotometer and H-NMR Spectra on Bruker Spectrometer (400MHz) using TMS as an internal standard, chemical shift in δ ppm.

Synthesis of 2-{[4'-(3'4'-dimethoxyphenylidine)-5'-oxo-2'-phenyl) imidazolyl]-1'-yl}-3-keto-1,5dimethyl-2-phenyl pyrazole (1h): A mixture of 4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)one; (2.03 g, 0.01 m); (E)-2-{[4-(3',4'-dimethoxybenzylidene)-5-oxo-2-phenyl}oxazole (3.09 gm, 0.01 m) and pyridine (10 mL). the reaction mixture refluxed for 6 h at 120°C temperature. After completion of reaction mixture checked with TLC, the reaction mixture poured into crushed ice, filtered, dried and recrystallization with methanol. M.P. 155°C, % yield: 82.9%. Elemental analysis: C, 70.73; H, 5.30; N, 11.33; $C_{29}H_{26}N_4O_4$; Found C, 70.40; H, 5.29; N, 11.30. ¹H NMR (DMSO); 3.7-3.8 (5, 4H, 2 × OCH₃); 2.0 - (5, 2H, -CH₂) – 4.8 (5, 1H, -CH); 6.9-7.8 (m, 134, Ar-H); 8.0 (5-1H-COOH). IR (KBR) (cm⁻¹): 2920 Str. (C-H asym); 2851 C-H def (asym); 1422 (C-H 0.0.P def); 1368 (C-H Str; aromatic); 3028 (C=C Str.); 1593 (C-N Str.); 1265 (C-O-C Str.); 1705 (>C=O Str.); 3028 (Vinyl –CH=CH Str.). M/Z: 494, 479, 463, 440, 417, 402, 389, 375, 360, 346, 332, 308, 294, 290, 254, 247, 230, 204, 188, 176, 165, 151, 131, 119, 105 (B.P); 91, 77, 56, 44, 40.

Similarly other compounds (1a–1n) have been synthesized (Table 1).

S. No	Aryl	M.F.	M.W.	M.P. (°C)	% Yield	% Nitrogen	
S. No.						Theoretical	Found
1a	C ₆ H ₅ -	$C_{27}H_{22}N_4O_2$	434.5	145	74.80	12.89	12.82
1b	2-OH-C ₆ H ₄ -	$C_{27}H_{22}N_4O_3$	450.5	176	71.81	12.44	12.33
1c	3-OH-C ₆ H ₄ -	$C_{27}H_{22}N_4O_3$	450.5	165	81.83	12.44	12.39
1d	$2-Cl-C_6H_4-$	$C_{27}H_{21}CIN_4O_2$	468.9	159	79.84	11.95	11.89
1e	$4-Cl-C_6H_4-$	$C_{27}H_{21}CIN_4O_2$	468.9	205	82.82	11.95	11.92
1f	$4-OCH_3-C_6H_4-$	$C_{28}H_{24}N_4O_3$	464.5	161	75.83	12.06	12.03
1g	4-OH-3-OCH ₃ -C ₆ H ₃ -	$C_{28}H_{24}N_4O_4$	480.5	140	72.85	11.66	11.52
1h	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{29}H_{26}N_4O_4$	494.5	155	82.97	11.33	11.30
1i	2-NO ₂ -C ₆ H ₄ -	$C_{27}H_{21}N_5O_4$	479.5	148	78.90	14.61	14.56
1j	3-NO ₂ -C ₆ H ₄ -	$C_{27}H_{21}N_5O_4$	479.5	100	75.99	14.61	14.58
1k	$4-NO_2-C_6H_4-$	$C_{27}H_{21}N_5O_4$	479.5	98	78.95	14.61	14.53
11	C ₄ H ₄ O-	$C_{25}H_{20}N_4O_3$	424.5	215	78.97	13.20	13.15
1m	4-N(CH ₃) ₂ -C ₆ H ₄ -	$C_{29}H_{27}N_5O_2$	477.6	172	75.06	14.66	14.59
1n	C ₆ H ₅ CH=CH-	$C_{29}H_{24}N_4O_2$	460.5	144	72.07	12.17	12.14

Table 1. Physical Constants of compound (1a-1n)

Scheme 1. Synthesis of 2-{[4'-(3'4'-dimethoxyphenylidine)-5'-oxo-2'-phenyl) imidazolyl] -1'-yl}-3-keto-1,5-dimethyl-2-phenyl pyrazole (1h).

www.joac.info

Antimicrobial activity: Antimicrobial activity [21-24] of compounds (1a–1n) were taken by cupplate method [25] whereas gram positive bacteria *B. subtilis, S. aureus* and Gram-negative bacteria *E. coli, P. Aeruginosa* and antifungal activity were taken by *A. niger*, all the antimicrobial activity of compounds (1a–1n) were compared with known standard drugs, e.g. Ampicillin, Chloramphenical, Norfloxacin and Griseofulvin at same concentration 40 μ g (Table 2).

Antimicrobial activity: (Zone of inhibition in mm)						
	Antibacterial activity				Antifungal activity	
Compound No.	Gram +ve bacteria		Gram	-ve bacteria	Antifungal activity	
	B.subtilis	S.aureus	E.coli	P.aeruginosa	A.niger	
1a	13	9	10	11	10	
1b	18	13	9	9	11	
1c	14	13	13	14	10	
1d	17	16	11	13	14	
1e	15	13	14	9	12	
1f	18	15	10	10	9	
1g	11	16	12	8	10	
1h	17	16	14	11	11	
1i	16	15	13	9	8	
1j	13	8	16	14	13	
1k	9	13	16	9	9	
11	12	10	14	10	10	
1m	17	10	15	8	10	
1n	12	14	9	13	11	
Ampicillin	18	19	13	10	0	
Chloramphenicol	13	15	15	12	0	
Norfloxacin	15	14	12	13	0	
Griseofulvin	0	0	0	0	14	

Table 2. Antimicrobial	activity of	compounds ((1a - 1n)

RESULTS AND DISCUSSION

The compounds 1c, 1d, 1h, 1i, 1j showed good antimicrobial activity compared with known standard drugs (Table 3). The modern work leads to a convenient synthetic method for the synthesis of new moieties which exhibits significant antimicrobial activities. Further exploration with appropriate structural modification of the above compounds may result in therapeutically useful products.

Table 3. Comparable antimicrobia	l activity of compounds (1a–1n)
----------------------------------	---------------------------------

Antimicrobial activity: (Zone of inhibition in mm)						
Commonwell		Antifungal				
Compound No.	Gram +ve bacteria		Gram –ve bacteria		activity	
110.	B .subtilis	S.aureus	E.coli	P.aeruginosa	A.Niger	
1a–1n	1b, 1d, 1f, 1h, 1i, 1m	1d, 1g, 1h, 1i	1c, 1e, 1i, 1j,1m	1c, 1d, 1j, 1n	1d, 1e, 1j	

APPLICATION

This work leads to a convenient synthetic method for the synthesis of new moieties which exhibits significant antimicrobial activities. Further exploration with appropriate structural modification of the prepared compounds may result in therapeutically useful products.

CONCLUSION

The compounds 1c, 1d, 1h, 1i, 1j showed good antimicrobial activity compared with known standard drugs. The modern work leads to a convenient synthetic method for the synthesis of new moieties

www.joac.info

which exhibits significant antimicrobial activities. Further exploration with appropriate structural modification of the above compounds may result in therapeutically useful products.

ACKNOWLEDGEMENTS

The authors are thankful to principal and management of Shree M and N. Virani Science College, Rajkot for providing research facilities and spectral analysis, also thankful to Head, Department of Chemistry, Saurashtra University, Rajkot for IR, NMR, and Mass spectral analysis. I am grateful to Dr. Neepa Pandhi and Dr. Vasantba Jadeja for screening of antimicrobial activity.

REFERENCES

- R. H. Parab and B. C. Dixit, Synthesis, Characterization and Antimicrobial Activity of Imidazole Derivatives Based on 2-chloro-7- methyl-3-formylquinoline, *E-Journal of Chemistry*, 2012, 9(3), 1188-1195
- [2]. Gupta, Namita, P. Pathak, Synthesis and Evaluation of N-substituted Imidazole Derivatives for Antimicrobial Activity, *Indian journal of pharmaceutical sciences*. **2011**, 73, 674-8. 10.4103/0250-474X.100246.
- [3]. Verma, Amita, Joshi, Sunil, Singh, Deepika, Imidazole: Having versatile biological activities. *Journal of Chemistry*, **2013**. 10.1155/2013/329412.
- [4]. B. K. Verma, S. Kapoor, U. Kumar, S. Pandey, P. Arya, Synthesis of new Imidazole Derivatives as effective Antimicrobial Agents, *Indian Journal of Pharmaceutical and Biological Research*, **2017**, 5(1), 1-9
- [5]. R. Sonawane, C. Magdum, Synthesis, Anticonvulsant Acitivity and Screening of Some Novel 1, 5-Disubstituted-4-Chloro-IH-Imidazole Derivatives, *Asian Journal of Biomedical and Pharmaceutical Sciences*, **2015**, 5(49), 1-4.
- [6]. D. Nardi, A. Tajana, A. Leonardi, R. Pennini, F. Portioli, M. J. Magistretti, A. Subissi; Synthesis and anticonvulsant activity of N-(benzoylalkyl)imidazoles and N-(.omega.-phenyl-.omega.-hydroxyalkyl)imidazoles, *J. Med. Chem.*, **1981**, 24(6), 727–731.
- [7]. Y. Khatoona, M. Shaquiquzzamanb, V. Singha, M. Sarafrozc, ; Synthesis, Characterization and Anticonvulsant Activity of Some Novel 4, 5-Disubstituted-1, 2, 4-Triazole Derivatives, *Journal of Applied Pharmaceutical Science*, **2017**, Vol. 7 (07), 158-167.
- [8]. M. W. Bhade, P. R. Rajput, Design and synthesis of some imidazole derivatives containing 4-(3,5-dichloro-2-hydroxyphenyl) imidazole moiety as antibacterial agents, *International J. applied and pure science and agriculture*, **2016**, 2(11).
- [9]. Romero, Delia, E. Torres Heredia, Víctor, García-Barradas, Oscar, Lopez, Elizabeth, Sanchez-Pavón, Esmeralda. Synthesis of imidazole derivatives and their biological activities, *Journal of Chemistry and Biochemistry*, **2014**, 2. 10.15640/jcb.v2n2a3.
- [10]. Panneerselvam, Theivendren, Anticonvulsant and sedative-hypnotic activity of some novel thiazolo quinazoline derivatives and analogues, *International Journal of Pharmaceutical Science and Biotechnology*. **2010**, 1(2), 113-120.
- [11]. A. Jamwal, A. Javed, V. Bhardwaj, A review on Pyrazole derivatives of pharmacological potential, *J. Pharm. BioSci.*, **2013**, 3, 114-123.
- [12]. T. P. Shrivastava, U. Patil, S. Garg, M. A. Singh, Divers Pharmacological Significance of Imidazole Derivatives- A Review, *Research J. Pharm. and Tech.*, **2013**, 6(1).
- [13]. A. Anisimova, V. M. Osipova, M. P. Galenko-Yaroshevskii, A. V. Ponomarev, V. L. Popkov, V. K. Prikhod'ko, A. A. Kade, E. A. Spasov, A. Synthesis and Local Anesthetic Activity of 1,2-Disubstituted Imidazo[1,2-a]benzimidazoles, *Pharmaceutical Chemistry Journal*, **2002**, 36. 418-422.
- [14]. Ali, Prof. Imran, Nadeem, Mohammad, Y. Aboul-Enein, Haasan, Imidazoles as potential anticancer agents, *Med. Chem. Comm.*, **2017**, 8. 1742-1773. 10.1039.
- [15]. M. Pankaj, S. Vikas, K. Minu, S. Abhishek, Synthesis, Characterization and Antiinflammatory activity of Cinnolines (pyrazole) derivatives. *IOSR Journal of Pharmacy and Biological*

Sciences. 2015, 10(6), 77-82

- [16]. Luigi Almirante, Luigi Polo, Alfonso Mugnaini, Ercolina Provinciali, Pierluigi Rugarli, Adriana Biancotti, Afro Gamba, Walter Murmann, Synthesis and Reactions of Imidazo[1,2-α]pyridines with Analgesic, Antiinflammatory, Antipyretic, and Anticonvulsant Activity, J. Med. Chem., 1965, 8(3), 305–312.
- [17]. D. C. Malvar, D. Ferreira, R. Teixeira, A. de Castro, Antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide, a new heterocyclic pyrazole derivative, *Life sciences*, **2013**, 95. 10.
- [18]. Faisal, Monther, Imad Jihad, Marwan, Synthesis, Characterization and Anti-Inflammatory Activity Assessment of New Ibuprofen Analogues Containing Imidazole-4-One Derivatives, *Journal of Global Pharma Technology*, **2018**, 10(3), 134-141.
- [19]. Jayashri D. Bhirud, Hemant P. Narkhede, Potassium Dihydrogen Phosphate: An Inexpensive Catalyst for the Synthesis of 2, 4, 5- TrisubstitutedImidazoles under Solvent Free Condition, *J. Applicable Chem.*, 2016, 5(5), 1075-1079.
- [20]. Ram C. Senwar, Krishna K. Rathore, Anita Mehta, Synthesis, Characterization and Antimicrobial Evaluation of Azetidinone and Tetrazole Derivatives of Benzo[b]thiophene, *J. Applicable Chem.*, 2016, 5(3), 620-627.
- [21]. Sunil Makwane, S.D. Srivastava, Rajiv Dua, S.K. Srivastava, Synthesis of 10-(2-Phenylimidazo [2, 1-b] [1,3,4]thiadiazol-6-yl)-10Hphenothiazine derivatives and their In-vitro Biological Studies, J. Applicable Chem., 2018, 7(4), 843-852.
- [22]. A. Bapodara, Application of Functionalized Indole Derivatives as Kinase Inhibitor and Potential Anticancer Agents, *J. Applicable Chem.*, **2018**, 7(2), 299-308.
- [23]. Ahmed S. Hamed, Synthesis, Characterization and Evaluation of Antibacterial Activity of Several New pyromillitimides Containing Benzothiazole Moiety, J. Applicable Chem., 2015, 4 (2), 450-455.
- [24]. M. K. Ravindra1, Karthik Kumara, K. M. Mahadevan, H. S. Bhojya Naik, KakarlaRaghava Reddy, N. K. Lokanath, S. Naveen, Synthesis, Characterization, Crystal Structure and Hirshfeld Surface Analysis of 4-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl) Phenyl Carboxylic acid Monohydrate, J. Applicable Chem., 2018, 7(3), 513-520.
- [25]. Jawaharmal, H.S. Lamba, S. Narwal, G. Singh, D. R. Saini, A. Kaur, S. Narwal, Synthesis of novel imidazole compounds and evaluation of their antimicrobial activity, *Indo Global Journal* of Pharmaceutical Sciences, 2012, 2. 147-156.