Available online at www.joac.info

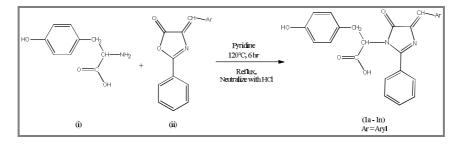
ISSN: 2278-1862

Journal of Applicable Chemistry 2019, 8 (2): 680-684

(International Peer Reviewed Journal)

Synthesis and Antimicrobial Activity of 2-{[(4'-Arylidine-5'-Oxo-2'-Phenyl) Imidazolyl]-1'-Yl}-3-(4-Hydroxyphenyl) Propanoic Acids

G. V. Vagadiya^{1, 2}*, D. M. Purohit² and S. B. Koradiya³


 R K University, Faculty of Doctoral Studies & Research, Rajkot, Gujarat, INDIA
 Shri Manibhai Virani & Smt. Navalben Virani Science College, Rajkot-5, Gujarat, INDIA
 Department of Chemistry, Atmiya University, Rajkot-5, Gujarat, INDIA Email: govindvsoni@gmail.com

Accepted on 14th March, 2019

ABSTRACT

Derivatives of 5-oxo-imidazoline exhibited good therapeutic activity, with a view of getting to synthesis $2-\{[(4'-arylidine-5'-oxo-2'-phenyl)imidazolyl]-1'-yl\}-3-(4-hydroxyphenyl)$ propanoic acids (1a-1n) have been synthesized, all the derivatives were undergone characterized by IR, ¹H NMR and Mass spectral characterization methods. All the synthesized compounds (1a-1n) were evaluated for their antimicrobial activity at 40 µg concentration.

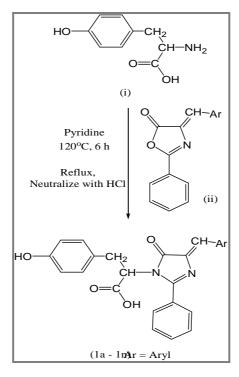
Graphical Abstract

Keywords: 5-Oxo-imidazolines, Antimicrobial activities, Characterization, Reflux.

INTRODUCTION

Derivatives of 5-Oxo-imidazoline exhibited good therapeutic activities like antibacterial [1-4], anticonvulsant [5-7], potent CNS depressant activity [8, 9] sedative and hyonotic [10], Hypotensive [11,12] Local anesthetic [13], antineoplastic [14], antihistamine [15], antipyretic and analgesic [16, 17], antiinflammatory [18, 19] etc. 2-{[(4'-arylidine-5'-oxo-2'-phenyl) imidazolyl]-1'-yl}-3-(4-hydroxy phenyl) propanoic acids (1a–1n) have been produced by the condensation under reflux of 2-amino-3-(4-hydroxyphenyl)propanoic acid with different azlactones or oxazolones in presence of pyridine.

The structures of the manufactured complexes were apportioned based on elemental analysis, TLC, Fourier transfer infrared spectroscopy, ¹H NMR and Fast ion Bombardment assisted Mass


Spectroscopic analysis. The antibacterial and antifungal activity was assayed by cup-plate method [20]. All the synthesized compounds were evaluated with their potent antibacterial activity against Gram+ve bacteria *B. subtilis* and *S. aureus* whereas Gram–ve bacteria against E. *coli* and *P. aeruginosa*. Antifungal activity towards *A. niger*, Antimicrobial activity taken at 40 μ g concentration by cup-plate method. Zone of inhibition have calculated in mm.

Antimicrobial activity of synthesized compounds (1a–1n) was compared with known standard drugs e.g. Ampicillin, Chloramphenicol, Norfloxacin and Griseofulvin at some concentration.

MATERIALS AND METHODS

Melting points were taken in open glass capillary tubes are uncorrected. IR spectra (cm⁻¹) were recorded on Shimadzu-435-IR Spectrophotometer and ¹H-NMR Spectra on Bruker Spectrometer (400MHz) using TMS as an internal standard, chemical shift in δ ppm.

Synthesis of 2-{[(4'-arylidine-5'-oxo-2'-phenyl) imidazolyl]-1'-yl}-3-(4-hydroxyphenyl)propanoic acids (1h): A blend of 2-amino-3-(4-hydroxyphenyl)propanoic acid; (1.81 g, 0.01 m); (E)-2-{[4-(3',4'-dimethoxybenzylidene)-5-oxo-2-phenyl}oxazole (3.09g, 0.01 m) and pyridine (10 mL). the reaction blend refluxed for 6 h at 120°C temperature. After completion of reaction mixture checked with Thin Layer Chromatography, the reaction mixture poured into crushed ice, filtered, dried and recrystallization with methanol. M.P. 96°C, % yield: 81.4%. Elemental analysis: C, 68.63; H, 5.12; N, 5.93; O, 20.32;C₂₇H₂₄N₂O₆; Found C, 67.92; H, 5.05; N, 5.80; O, 20.06. ¹H NMR (DMSO); 3.7-3.8 (5, 6H, 2 × OCH₃); 2.0 - (5, 2H, -CH₂); – 2.11 (5, 1H, CH); 6.5-7.7 (m, 12H, Ar-H); 9.2(5, 1H-COOH); 7.8 - (5, 1H, CH); 4.9 – (s, 1H, OH). IR (KBR) (cm⁻¹): 2920 Str. (C-H asym); 2851 C-H def (asym); 1422 (C-H 0.0.Pdef); 1368 (C-H Str; aromatic); 3028 (C=C Str.); 1593 (C-N Str.); 1265 (C-O-C Str.); 1705 (>C=O Str.); 3028 (Vinyl –CH=CH Str.); 2931 (O-H Str.); 1263 (C-O Str.). M/Z: 486, 472, 458, 442, 428, 414, 398, 383, 367, 355, 339, 322, 308, 293, 277, 264, 248, 234, 219, 205, 190, 177, 162, 151 (B.P); 133, 121, 105, 91, 77, 65, 44, 41, 40. Similarly other compounds (1a–1n) have been synthesized (Scheme 1).

Scheme 1. Flow of reaction *www.joac.info*

RESULTS AND DISCUSSION

Antimicrobial Activity: Antimicrobial activity of compounds (1a–1n) were taken by cup-plate method [20-25] whereas gram positive bacteria *B. subtilis, S. aureus* and Gram-negative bacteria *E. coli, P. Aeruginosa* and antifungal activity were taken by *A. niger*, all the antimicrobial activity of compounds (1a–1n) were compared with known standard drugs eg: Ampicillin, Chloramphenicol, Norfloxacin and Griseofulvin at same concentration 40 μ g (Table 1-3).

S. No.	Ar	M.F.	M.W.	M.P.	%	% Nitrogen	
	Aſ			(°C)	Yield	Th	Found
1a	C ₆ H ₅ -	$C_{25}H_{20}N_2O_4$	412.4	85	78.4	6.79	6.49
1b	$2-OH-C_6H_4-$	$C_{25}H_{20}N_2O_5$	428.4	123	74.4	6.54	6.29
1c	3-OH-C ₆ H ₄ -	$C_{25}H_{20}N_2O_5$	428.4	108	81.4	6.54	5.63
1d	$2-Cl-C_6H_4-$	$C_{25}H_{19}ClN_2O_4$	446.9	116	76.4	6.27	6.18
1e	$4-Cl-C_6H_4-$	$C_{25}H_{19}ClN_2O_4$	446.9	118	73.4	6.27	5.55
1f	$4-OCH_3-C_6H_4-$	$C_{26}H_{22}N_2O_5$	442.5	130	79.4	6.33	5.77
1g	4-OH-3-OCH ₃ -C ₆ H ₃ -	$C_{26}H_{22}N_2O_6$	458.5	102	72.4	6.11	5.38
1h	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{27}H_{24}N_2O_6$	472.5	96	81.4	5.93	5.68
1i	$2-NO_2-C_6H_4-$	$C_{25}H_{19}N_3O_6$	457.4	117	74.4	9.19	8.93
1j	$3-NO_2-C_6H_4-$	$C_{25}H_{19}N_3O_6$	457.4	90	78.5	9.19	9.11
1k	$4-NO_2-C_6H_4-$	$C_{25}H_{19}N_3O_6$	457.4	190	76.5	9.19	8.25
11	C_4H_4O	$C_{23}H_{18}N_2O_5$	402.4	105	77.5	6.96	6.28
1m	4-N(CH ₃) ₂ -C ₆ H ₄ -	$C_{27}H_{25}N_3O_4$	455.5	105	78.5	9.22	8.94
1n	C ₆ H ₅ CH=CH-	$C_{27}H_{22}N_2O_4$	438.5	112	83.5	6.39	5.61

Table 1. Physical Constants of compound (1a–1n)

Table 2. Antimicrobial activity of compounds (1a - 1n)

Antimicrobial Activity: (Zone of inhibition in mm)							
Commonwed		Antifungal activity					
Compound No.	Gram +ve bacteria		Gram	–ve bacteria	Antifungai activity		
110.	B. subtilis	S. aureus	E. coli	P. aeruginosa	A. niger		
1a	15	10	11	09	11		
1b	18	15	16	08	08		
1c	12	13	14	09	08		
1d	17	16	14	09	13		
1e	16	18	15	11	09		
1f	11	13	10	08	08		
1g	09	14	11	09	15		
1h	17	18	13	12	16		
1i	11	10	12	10	10		
1j	12	11	14	11	09		
1k	14	11	12	10	08		
11	09	11	10	09	08		
1m	11	13	14	12	12		
1n	13	16	08	08	11		
Ampicillin	18	19	13	10	0		
Chloramphenicol	13	15	15	12	0		
Norfloxacin	15	14	12	13	0		
Griseofulvin	0	0	0	0	14		

Table 3. Comparable antimicrobial activity of compounds (1a–1n)

Antimicrobial Activity: (Zone of inhibition in mm)							
C		Antifungal					
Compound No.	Gram +ve bacteria		Gram –	activity			
INU.	B. subtilis	S. aureus	E. coli	P. aeruginosa	A.niger		
la–1n	1b, 1d, 1e, 1h	1b, 1d, 1e, 1h, 1n	1b, 1d, 1e, 1j	1e, 1h	1d, 1g, 1h		

www.joac.info

APPLICATION

The method of synthesis can be applied for manufacturing of various active pharmaceutical ingredients for activities against noted microbes viruses and fungus.

CONCLUSION

The compounds 1b, 1d, 1e, 1h showed good antimicrobial activity compared with known standard drugs.

ACKNOWLEDGEMENTS

The authors are thankful to principal and management of Shri Manibhai and Smt. Navalben Virani Science College, Rajkot for providing research facilities and spectral analysis, also thankful to Head, Department of Chemistry, Saurashtra University, Rajkot for IR, NMR, and Mass spectral analysis. I am grateful to Dr. Neepa Pandhi and Dr. VasantbaJadeja for screening of antimicrobial activity.

REFERENCES

- [1] R. H. Parab, B. C. Dixit and D. J. Desai, Synthesis, Characterization and Antimicrobial Activity of Imidazole Derivatives, *Asian Journal of Chemistry*, **2011**, 23(6), 2725-2728.
- [2] Namita Gupta, D. P. Pathak, Synthesis and Evaluation of N-substituted Imidazole Derivatives for Antimicrobial Activity, *Indian J. Pharm. Sci.*, **2011**, 73(6), 674-678
- [3] A. K. Jain, V. Ravichandran, M. Sisodiya, R. Agrawal, Synthesis and antibacterial evaluation of 2-substituted-4,5-diphenylN-alkyl imidazole derivatives, *Asian Pacific Journal of Tropical Medicine*, **2010**, 471-474.
- [4] L. Sarala, J. Princy Merlin, E. Elanthamilan, Catalyst free synthesis of imidazoles: Characterization and its antimicrobial activity, Journal of Chemical and Pharmaceutical Research, **2016**, 8(8), 255-258.
- [5] A .N Ingle, Niraj Sinha, S. P Wate, K. P Bhusari, Synthesis and Antimicrobial Activity Study of Some Piprazino Methyl Imidazole Derivatives, **2014**, 3(1), 13-18.
- [6] A. Mukherjee, S. Kumar, M. Seth Bhaduri, Synthesis of1-methyl-4-nitro-5- substituted imidazole and substitutedimidazolothiazole derivatives as possible antiparasitic agents, *Ind J. Chem.*, **1989**, 28B, 391-6.
- [7] H. Goker, M. Alp, S. Yildiz, Synthesis and potent antimicrobial activity of some novel N-(alkyl)-2-phenyl-1h-benzimidazole-5-carboxamidines, Molecules, **2000**, 10,1377-1386.
- [8] Mohammad Amir, Israr Ali, Mohd. Zaheen Hassan, Imidazole Incorporated Semicarbazone Derivatives as a New Class of Anticonvulsants: Design, Synthesis and In-Vivo Screening, *Medicinal Chemistry*, **2013**, 9, 571-580.
- [9] V. Sharma, M. S. Khan, Synthesis of novel tetrahydroimidazole derivatives and studies for their biological properties, *Eur. J. Med. Chem.*, **2001**, 36, 651-8.
- [10] Kumari Shalini, Pramod Kumar Sharma, Nitin Kumar, Imidazole and its biological activities: A review, *Der Chemica Sinica*, **2010**, 1 (3), 36-47.
- [11] C. M. Mahalakshmi, M. Karthick, M. Shanmugam, V. Chidambaranathan, Synthesis, spectral characterization and antimicrobial studies of novel imidazole derivatives, *Der Pharma Chemica*, **2015**, 7(1), 14-19.
- [12] D. Sharma, B. Narasimhan, P. Kumar, A. Jalbout, Synthesis and QSAR evaluation of 2-(substituted phenyl)-1Hbenzimidazoles and [2-(substituted phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanones, *Eur. J. Med. Chem.*, 2009, 44, 1119-27.
- [13] Sumitemo Chemical Co. Ltd., Jpn. KokaiTbfcfcyoKoho JP 57, 120, 576, Chem. Abstr, 1983, 98 16683j.
- [14] Sanchita Baroniya, Zaihra Anwer, Pramod K. Sharma, Rupesh Dudhe, Nitin Kumar, Recent

www.joac.info

advancement in imidazole as anti-cancer agents: A review, *Der Pharmacia Sinica*, **2010**, 1(3), 172-182.

- [15] C. R. Shrrna and D. R. Shridhar; *Indian Pat.IM.* 154, 314 (1984); *ChemAbstr.*, **1986**, 105,133,738.
- [16] Jayashri D. Bhirud, Hemant P. Narkhede, Potassium Dihydrogen Phosphate: An Inexpensive Catalyst for the Synthesis of 2, 4, 5- TrisubstitutedImidazoles under Solvent Free Condition, *J. Applicable Chem.*, **2016**, 5(5), 1075-1079.
- [17] A. Shafiee, Kaabinejadian, Saghar, Foroumadi, Alireza, M. R. Zarrindast, Synthesis and Antiinflammatory Activity of Some 1-Methyl-5-(4-substituted benzoyl)imidazole-2-acetates. Pharmacy and Pharmacology Communications, **2010**, 5, 273-275.
- [18] Ram C. Senwar, Krishna K. Rathore, Anita Mehta; Synthesis, Characterization and Antimicrobial Evaluation of Azetidinone and Tetrazole Derivatives of Benzo[b] thiophene, *J. Applicable Chem.*, **2016**, 5(3), 620-627.
- [19] Sunil Makwane, S. D. Srivastava, Rajiv Dua, S. K. Srivastava1, Synthesis of 10-(2-Phenylimidazo [2, 1-b] [1,3,4]thiadiazol-6-yl)-10Hphenothiazine derivatives and their In-vitro Biological Studies, J. Applicable Chem., 2018, 7(4), 843-852.
- [20] Prakash S Bisen, Kavita Verma, "Handbook of Microbiology", First Edition, CBS Publishers & Distributors, New Delhi-110002, India, ISBN: 8123902697
- [21] A. Bapodara, Application of Functionalized Indole Derivatives as Kinase Inhibitor and Potential Anticancer Agents, *J. Applicable Chem.*, **2018**, 7(2), 299-308.
- [22] Ahmed S. Hamed, Synthesis, Characterization and Evaluation of Antibacterial Activity of Several New pyromillitimides Containing Benzothiazole Moiety, J. Applicable Chem., 2015, 4(2), 450-455.
- [23] M. K. Ravindra, Karthik Kumara, K. M. Mahadevan, H. S. Bhojya Naik, Kakarla Raghava Reddy, N. K. Lokanath, S. Naveen, Synthesis, Characterization, Crystal Structure and Hirshfeld Surface Analysis of 4-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl) Phenyl Carboxylic acid Monohydrate, J. Applicable Chem., 2018, 7 (3), 513-520.
- [24] Ali, Prof. Imran, Nadeem, Y. Mohammad Aboul-Enein, Haasan, Imidazoles as potential anticancer agents, *Med. Chem. Comm.*, **2017**, 8. 1742-1773.
- [25] Nawseen Fatima Ansari, Arvind Kumar Pandey, Akhilesh Kumar, Kamal Pratap Singh, I. R. Siddiqui, A Convenient and Efficient One-Pot Three Component Synthesis of 1, 3-Bis (2-Subsituted Aryl)-4, 5-Diphenyl Oxazol-3(2H-Yl) Thiourea as Potential Antimicrobial Agents, J. Applicable Chem., 2018, 7(3), 488-495.