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Abstract—Frequent pattern mining is a discipline with many 

practical applications, where massive computational power 

and speed are required. Many state-of-the-art frequent 

pattern mining applications have inefficient solutions for 

both shared memory and multiprocessor systems due to 

problems with parallelism and memory. One of possible 

solutions to the trouble is the use of Graphics Processing 

Unit (GPU) in the organization along with modification of 

classical mining algorithms in such a manner, that the 

sequential part of the algorithm is run on the server and the 

parallel port on GPU.s. Here we present a survey of multi-

core and GPU accelerated parallelization of the FIM 

algorithms 

 

Index terms – GPU , GP-Apriori , computing ,Parallel 

computing 

I. INTRODUCTION 

Data mining is the process of discovering interesting, 

meaningful, and understandable patterns hidden in large 

data sets [1]. Now a day’s organization collects sales data 

and this data is stored in form of transaction. Each 

transaction represents sales order. Each record stored in 

such database represents a transaction and attribute 

represent item parches by the client. 

 

Let’s consider an example of supermarket in which 

massive quantities of data continuously being taken in and 

laid in. They apply market basket analysis to analyze 

customer buying habits and discovering patterns that 

occur most frequently in the database. For example, 65 

percent of clients who buy bread will also buy the butter. 

Association rule mining is the process of finding  

interesting relationship, patterns between the unrelated 

data in the transactional databases or  data repositories. 

Apriori algorithm is used for finding association rules 

among items in market-basket data [2]. . Association rules 

have two main characteristics, i.e. minimum support and 

minimum confidence. Support is defined as a ratio of the 

number of transaction that the total number of 

transactions. Whereas Confidence is defined as the ratio of 

number of transactions which hold rule to number of 

transaction containing  antecent. This mining process is 

split into two sub process. The first measure is obtaining 

those items which occurrences in the database or across 

the minimum support count or lower limit threshold. It is 

called frequent item-set. And the second step is for 

generating patterns from those frequent item-set with 

condition which satisfy the minimum confidence. 

There are many application areas where item set mining is 

used such as retail business, bioinformatics and medicine, 

fraud detection and network intrusion detection and many 

more. The basic advantage of Apriori gives an efficient, 

frequent item set in transactional database as an output. 

Where as its  dis-advantages are repeatedly scanning the 

transaction databases and get a big number of candidate 

item- position [1]. 

 
Apriori Introduction 

 
Apriori employs an iterative approach known as point-

wise search, where k-itemsets are used to explore (k+1) -

itemsets. Let D be the market-basket database whose each 

row contains T Transactions tagged with unique identifier 

tied. here let me be the item set {I1, I2, I3, I4}. 

If an item set contains k-items then it is called k-itemsets 

and all its subset satisfy the minimum support count then 

it is called Lk frequent itemset or large itemset. Atwo-step 

process is followed,(a) Join, self-join with previous 

frequent k-itemset and than create new candidate Ck+1 

itemset. (b) Prune, remove the subset of current candidate 

itemsets which are not frequent in the previous measure. 

Below working of apriori algorithm is explained. 

 

1. Scans all the transactions of database to find out      

candidate 1-itemset C1 to count the number of      

occurrences of each point. 

2. Suppose that minimum confidence and minimum 

support count are given as min-conf and min-sup 

respectively. 

3. Eliminate items from C1 whose count doesnot satisfy 

minsup threshold.Remaining1-items in C1is called L1. 

4. To find the set of frequent 2-itemsets, L1 join L1 and 

create the new C2.n scan the entire database and calculate 

the number of times candidate 2-itemset appeared in the 

database. 

5. Use the pruning in C2 and get L2. 

6. In this way procedure step 2 to 5 is carried out until CK 

is empty or nil. 

 

CUDA Programing 
 

 At the start of multicore CPUs and GPUs the 

processor chips have become parallel systems. Only the 
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focal ratio of the program will be increased if software 

exploits parallelism provided by the underlying 

multiprocessor architecture [5]. Therefore, there is great 

demand to design and develop the software that supports 

muthithreading,and each thread running concurrently on a 

processor, results in increasing the speed of the program 

dramatically. NVIDIA’s graphics processing units (GPU) 

have evolved into a highly parallel, multithreaded, many-

core processor (as depicted in Figure 1 (a)) with 

tremendous computational horsepower and very high 

memory bandwidth. GPUS have hundreds of processor 

cores and thousands of threads concurrently running on 

these substances. It relies on the massively multi-threaded 

SIMD (Single Instruction, Multiple-Data) architecture 

provided by GPUs. 

 

 
Fig.1 Architecture of Parallel Processor 

 

CUDA stands for Compute Unified Device Architecture. 

It is a parallel programming paradigm released in 2007 by 

NVIDIA. It is practiced to acquire software for graphics 

processors and is used to prepare a sort of general purpose 

applications for GPUs that are extremely parallel in 

nature. 

 

 The CUDA parallel programming model is designed to 

surmount this challenge while maintaining a low learning 

curve for software engineers familiar with standard 

programming languages such as C. CUDA has some 

specific functions called kernels kernel can be a funtion or 

a full program invoked by CPU. IT is executed an N 

number of times in parallel on GPU by using N threads. 

Each thread that executes the kernel is presented a unique 

thread ID that is accessible within the meat through the 

built-in threadIdx  variable.. CUDA grants shared memory 

and synchronization among the threads. CUDA threads 

may access data from multiple memory spaces during 

their performance. Each thread has private local memory. 

Then the number of threads per block, i.e., each thread 

block has shared memory visible to all threads of the 

block and with the same lifetime as the cube. .All the 

threads of blocks per grid have access to the same global 

memory.There are two additional read-only memory 

spaces accessible by all threads i.e. texture and constant 

memory spaces.Texture memory is read from kernels 

using the device functions described in Texture Functions. 

Reading data from texture or surface memory instead of 

global memory can have several performance 

benefits.Texture memory also offers different addressing 

modes, as well as data filtering, for some specific data 

formats. 

 

Parallel Algorithms 
 

Agrawal& Shafer [11] was staged the first parallel version 

of Aprior. Three different parallel versions of the Apriori 

method are given in [11]. Among these methods, the 

database is supposed to be distributed horizontally among 

the central processing units. The foremost method is 

called Count Distribution (CD), which is a straight-

forward parallelization of Apriori. Each processor works 

out the partial backing of all candidates itemsets from its 

local database partition. At the end of each iteration, the 

processors exchange their partial supports to measure the 

global supports. The second method is called Data 

Distribution (DD), which partitions the candidate itemsets 

into disjoint sets and attributes them to different CPUs. In 

the DD method, each processor has to skim the full 

database (not only its local partition) in all iterations, to 

measure the global livelihood. Thusly, the DD method 

involves a high communication overhead. The Candidate 

Distribution algorithm follow the same strategy applied in 

Data Distribution, but it selectively replicates the dataset, 

the reason behind that each processor proceeds 

independently. The local component of the dataset is still 

scanned in every  iteration. Among the three parallel 

versions of Apriori, the CD method is reported to perform 

the best. Many algorithms can use one of the above 

strategy to parallelize it. Like AprioriDP[9] was dynamic 

and triangle based method to find frequent2-itemset. 

 

The rest of this paper is structured as follows. Part 2 

describes a survey of multi-core and GPU accelerated 

parallelization of the FIM algorithms. Section 3 shows the 

comparison between those algorithms and last section 

shows the conclusion. 

II. LITERATURE SURVEY 

In [6],[7],[14] presented were three modified versions of 

the most basic Apriori algorithm, adapted for use with 

GPU:Apriori TBI, Apriori PBI and GPApriori. 

 

2.1 PBI & TBI algorithm[6] 
 

Wenbun Fang and Mian Lu.[6] group of authors proposed 

Apriori[10] and was first time addressed parallel version 

of FIM[4]. Two different approaches are pure bitmap and 

trie-based bitmap.Transactions and itemsets are encoded 

in bitmap and transfer in GPU but it will degrade the 

performance. Firstly, traditional approach (1) was used 

and nowadays vertical representation (2) is used and 

demonstrate speed factor  which is higher than traditional 
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one. PBI-GPU is faster in dense dataset. TBI-GPU is 

better in sparse dataset. PBI stores  itemsets in a bitmap 

structure and look up table is used to avoid counting the 

number of 1’s  in integers, so table stores the mapping of 

integer in its binary representation. TBI uses a tree 

structure to store itemsets and adopts co-processing 

scheme [6]. 

 

 
(1)                                                   (2) 

Fig.2 dataset[6] 

 

PBI-GPU vs TBI-GPU[12]  comparison shows the effect 

of dfferent itemset representations - bitmap-based and trie-

based. PBI-GPU and TBI-GPU invokes exactly the same 

support counting procedure on the GPU. The performance 

di®erence only comes from the candidate generation. The 

dense data set Chess has very few items (75 in total), 

hence the bitmap representation of itemsets for PBI-GPU 

is of small size. On the other hand, the sparse dataset 

Retail has many items (16469 in total), so PBI-GPU 

should process large bitmap of itemsets. Thus, the number 

of items determines the performance of PBI-GPU's 

candidate generation. Therefore, PBI-GPU outperforms 

TBI-GPU on denser data set, due to the smaller size of 

bitmap representation for itemsets, while TBI-GPU is 

better on the sparse dataset. [12]. 

 

2.2 GPAprioriAlgorithm[7] 
 

Fan Zhang, Yan Zhang, and J. Bakos[7] proposed GPU 

accelerated traditional Apriori implementation which is 

known as GPApriori. It adopts the same methods, like 

Support Counting, Candidate Generation and Candidate 

Pruning. Other frequent itemset mining algorithms either 

use vertical representation or horizontal representation but 

in GPApriori, they have introduced new Bitset 

representation of complete database.Thebitset 

representation requires more memory space but it is more 

suitable for designing a parallel set join operation, which 

is better suited for GPU.”Botwise and” operations 

performed for joining two transaction list. 

In support counting process is based on a complete 

intersection in which, candidates are copied from main 

memory to graphic memory by host code, the GPU uses 

bitwise intersections on their vertical transaction lists, and 

are replicated back to main memory. Compared to the 

equivalent class clustering method, complete intersection 

adds computational complexity in order to reduce memory 

usage, but in the GPU cost of adding logic operations is 

lower. Carrying out of support counting in codes  to 

ensure that coalesced memory access it aligned vertical 

list into 64 Byte. As bitset representation is used, it needs 

to enumerate the number of 1. The inbuilt code function 

pops (population count) is applied to calculate support 

count and store it in graphics memory in the form of 

vectors which are transferred to main memory. A parallel 

summation reduction algorithm [13] is used to tally all the 

support values recursively in its first constituent. 

 

2.3 Frontier Expansion[14] 
 

Fan Zhang, Yan Zhang, Jason D. Bakos[14] describe a 

new parallel Frequent Itemset Mining algorithm 

called “Frontier Expansion,”  an improved data-parallel 

algorithm derived from the Equivalent Class 

Clustering(Eclat) method, in which a partial breadth-first 

search is utilized. It has two main aims, firstly to finely 

parallelize Eclat’s computational kernel for GPU 

acceleration and second is to achieve a dynamic tradeoff 

between performance and memory requirement, setting 

aside for a large data set to be processed with limited 

memory. 

Algorithm utilizes Frontier stack for candidate 

generations. IT rapidly expands stack by consuming old, 

generating fresh and deleting  infrequent candidates from 

stock for support counting, the frequency of new 

candidates is computed by intersecting the best vertical 

transaction list on the GPU. By visiting a big number of 

CUDA memory allocations and de-allocations, vertical list 

is generated and discarded. It allocates space for the upper 

limit number of vertical lists of GPU and stories  free list 

addresses in a stack.a stack. When the program needs a 

free vertical list, it pops and returns an address stored.This 

method generates candidate of size K if candidates size of 

K-1 has the same prefix else they aren’t in same class. 

 

In frontier expansion during the expansion, the support for 

each of a set of new candidates are countered by GPU 

kernel and those meet the necessity of minimum support 

are forced back into stack. Candidates are sorted 

descendently by they support values and procedure is 

replicated  until the heap is empty. 

breadth first search will process more candidates in  

support counting phase and maximize the degree of data 

parallelism but the trade off is that the expansion requires 

a larger memory space. 

 

2.4 Tree projection[8] 
 

George Teodoro Nathan Mariano Wagner Meira Jr. 

Renato Ferreira[8] Describes Tree projection based 

frequent itemset mining algorithm. It is made up of core 

tree data structures, which is used to guide mining 

operations. Nodes  assumes a lexicographic ordering  
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Table-1 Comparison of Algorithms[6],[7],[8],[14],[15] 

 

among frequent itemsets in a database, which is built at 

run-time Depth represents the size or levels of 

itemset.Tree projection[8] employs a breadth-first 

strategy. Two parallelization methods for building tree 

are: (i) the Transaction processing, processing the 

transactions in parallel on the available hardware, each 

counting matrix of the nodes at level k- 1 is updated.; (ii) 

the node level parallelism, where each node being 

expanded is assigned to a different processor and updating 

its node matrix. 

 

They demonstrate various locking techniques like node 

level, tree level to avoid race condition in the multi core 

CPU. If the node processing will create, load imbalance 

and needs more memory because matrices need to be 

updated concurrently in memory which is infeasible in 

many instances. On the other end If transaction processing 

is used, then execution time is controlled using an add 

count method that processes the transactions making 

interesting candidate for parallelism and so tree node 

expanded among parallel processor and synchronized 

accesses. Some other critical problem find is how to 

efficiently represent a lot of transactions  on the GPU. 

And then they have introduced novel and compact vector 

base database representation. 

    

2.5 Dynamic counting itemset [15] 

Claudio Silvestri, Salvatore Orlando Universit`aCa’ 

FoscariVenezia [15] group of authors proposed gpuDCI, 

parallel version of Dynamic Itemset Counting [8]. DCI is  

 

a multi-strategy algorithm characterized by several phases, 

each exploiting a different strategy. The key idea, is all the  

subsets of a frequent set must be frequent. And so, the 

algorithm performs several iterations, starting with one  

Item patterns and increasing the size of searches, pattern 

at each iteration. DCI adopts scanning the database by 

transaction, using specific direct-count data structure to 

update the counters of the itemsets, After that when the 

number of surviving transactions and items allow vertical 

representation of the pruned dataset in memory. But later 

on DCIswitches to Intersection phase is more efficient as 

it has to deal with higher number of candidates than the 

Direct Count phase. It applies a bitwise data structure. 

Gpu-DCI examined the transaction wise and candidate 

wise strategies. Count phase would hinder the efficient 

exploitation of GPUs during this phase.Transaction wise 

parallelism was carried out by increasing stride with block 

id  and thread id while in candidate parallelism stride with 

only thread id. Another novel approach is two level 

reductions, local reduction performed by each 

multiprocessor, data fetched from shared memory which 

is already exist in it. Global reduction may cause more 

penalty because data must be fetched from the counters 

which is residing in global memory. 

III. COMPARISON 

Apriori and Eclat iteratively generate k+1-sized frequent 

item sets by joining frequent k-sized item sets. This step is 

called candidate generation. After making each new set of 

candidates, the algorithm scans the transaction database to 

estimate the number of occurrences of each nominee. This 

amount is called support counting. The main difference 

between Apriori and Eclat is the manner they represent 

candidate and transaction data and the decree that they 

skim the tree structure that stores the candidates [7]. 

Apriori uses breath search technique and can be 

parallelized by parallel computation, however, results in 

extremely high memory usage [14]. Eclat uses depth 

search technique requires less memory if the utmost are 

small in number. FPGrowth has greater performance than 
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Apriori and Eclat but it requires high memory that 

prevents it being employed by large data sets. For high 

threshold value Apriori out performs FPGrowth[14]. 

 

Here we have chosen five different parameters and five 

algorithms identify the functionality. In kind of database 

parameter all GPU versions use bitmap representations 

because of heterogeneous environment, but tree projection 

based method vector representations. By comparing both 

the representations bitmap is complete matrix and 

therefore required more storage than a vector. 

 

Second parameter shows algorithm can use more than one 

GPU. The first PBI & TBI and gpuDIC can't utilize the 

more than one GPU. Whereas for Frontier Expansion 

apply the old concept to parallelize, but even so it 

improves all over result in their experimentations. 

 

Third parameter shows that from which algorithm they 

proposed the improvement in their clause. Frontier  

expansion and tree projection base proposed methods 

improve mainly Éclat and FPGrowth. Here GPApriori 

traditional apriori version. But here specific to DIC 

(dynamic itemset counting) they proposed parallel version 

gpuDIC.   

 

Fourth parameter speaks tree base operation performed on 

CPU and Bitwise AND operation performed on GPU. As 

tree has unpredictable memory access and so GPU is not 

applicable. So candidate generation by tree like techniques 

that causes to be done on the CPU, in other word tree 

structure has to be managed by the CPU, then generated 

candidate move to the GPU memory. 

 

The final parameter in the table is parallelization strategy. 

There are two main strategies, i.e. Transaction and 

candidate strategy to be used.  gpuDIC and Tree 

projection  utilize both the strategies and discuss that 

transaction wise parallelism is more suitable if we have 

enough resources. Whereas candidate wise parallelism 

gives unexpected outcome and also that it’s not always 

outperform the transaction wise parallelism. 

IV. CONCLUSION  AND FUTURE WORK 

Throughout the survey, we have spoken about various 

ways to solve frequent itemset mining problem. All the 

algorithms mentioned in the survey provide the same idea 

with  a priori that can be date generation, support counting 

and candidate pruning.g. Implementing GPApriori 

algorithm and try to and reduce the  items and increase its 

efficiency. 
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