
 © 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100205 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1023

A SURVEY ON FREQUENT ITEMSET MINING

TECHNIQUES USING GPU
Ayushi M Patel, Dharmesh Bhalodiya

Computer Engineering Department

Silver Oak College of Engineering and Technology, Ahmedabad

Abstract—Frequent pattern mining is a discipline with many

practical applications, where massive computational power

and speed are required. Many state-of-the-art frequent

pattern mining applications have inefficient solutions for

both shared memory and multiprocessor systems due to

problems with parallelism and memory. One of possible

solutions to the trouble is the use of Graphics Processing

Unit (GPU) in the organization along with modification of

classical mining algorithms in such a manner, that the

sequential part of the algorithm is run on the server and the

parallel port on GPU.s. Here we present a survey of multi-

core and GPU accelerated parallelization of the FIM

algorithms

Index terms – GPU , GP-Apriori , computing ,Parallel

computing

I. INTRODUCTION

Data mining is the process of discovering interesting,

meaningful, and understandable patterns hidden in large

data sets [1]. Now a day’s organization collects sales data

and this data is stored in form of transaction. Each

transaction represents sales order. Each record stored in

such database represents a transaction and attribute

represent item parches by the client.

Let’s consider an example of supermarket in which

massive quantities of data continuously being taken in and

laid in. They apply market basket analysis to analyze

customer buying habits and discovering patterns that

occur most frequently in the database. For example, 65

percent of clients who buy bread will also buy the butter.

Association rule mining is the process of finding

interesting relationship, patterns between the unrelated

data in the transactional databases or data repositories.

Apriori algorithm is used for finding association rules

among items in market-basket data [2]. . Association rules

have two main characteristics, i.e. minimum support and

minimum confidence. Support is defined as a ratio of the

number of transaction that the total number of

transactions. Whereas Confidence is defined as the ratio of

number of transactions which hold rule to number of

transaction containing antecent. This mining process is

split into two sub process. The first measure is obtaining

those items which occurrences in the database or across

the minimum support count or lower limit threshold. It is

called frequent item-set. And the second step is for

generating patterns from those frequent item-set with

condition which satisfy the minimum confidence.

There are many application areas where item set mining is

used such as retail business, bioinformatics and medicine,

fraud detection and network intrusion detection and many

more. The basic advantage of Apriori gives an efficient,

frequent item set in transactional database as an output.

Where as its dis-advantages are repeatedly scanning the

transaction databases and get a big number of candidate

item- position [1].

Apriori Introduction

Apriori employs an iterative approach known as point-

wise search, where k-itemsets are used to explore (k+1) -

itemsets. Let D be the market-basket database whose each

row contains T Transactions tagged with unique identifier

tied. here let me be the item set {I1, I2, I3, I4}.

If an item set contains k-items then it is called k-itemsets

and all its subset satisfy the minimum support count then

it is called Lk frequent itemset or large itemset. Atwo-step

process is followed,(a) Join, self-join with previous

frequent k-itemset and than create new candidate Ck+1

itemset. (b) Prune, remove the subset of current candidate

itemsets which are not frequent in the previous measure.

Below working of apriori algorithm is explained.

1. Scans all the transactions of database to find out

candidate 1-itemset C1 to count the number of

occurrences of each point.

2. Suppose that minimum confidence and minimum

support count are given as min-conf and min-sup

respectively.

3. Eliminate items from C1 whose count doesnot satisfy

minsup threshold.Remaining1-items in C1is called L1.

4. To find the set of frequent 2-itemsets, L1 join L1 and

create the new C2.n scan the entire database and calculate

the number of times candidate 2-itemset appeared in the

database.

5. Use the pruning in C2 and get L2.

6. In this way procedure step 2 to 5 is carried out until CK

is empty or nil.

CUDA Programing

 At the start of multicore CPUs and GPUs the

processor chips have become parallel systems. Only the

 © 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100205 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1024

focal ratio of the program will be increased if software

exploits parallelism provided by the underlying

multiprocessor architecture [5]. Therefore, there is great

demand to design and develop the software that supports

muthithreading,and each thread running concurrently on a

processor, results in increasing the speed of the program

dramatically. NVIDIA’s graphics processing units (GPU)

have evolved into a highly parallel, multithreaded, many-

core processor (as depicted in Figure 1 (a)) with

tremendous computational horsepower and very high

memory bandwidth. GPUS have hundreds of processor

cores and thousands of threads concurrently running on

these substances. It relies on the massively multi-threaded

SIMD (Single Instruction, Multiple-Data) architecture

provided by GPUs.

Fig.1 Architecture of Parallel Processor

CUDA stands for Compute Unified Device Architecture.

It is a parallel programming paradigm released in 2007 by

NVIDIA. It is practiced to acquire software for graphics

processors and is used to prepare a sort of general purpose

applications for GPUs that are extremely parallel in

nature.

 The CUDA parallel programming model is designed to

surmount this challenge while maintaining a low learning

curve for software engineers familiar with standard

programming languages such as C. CUDA has some

specific functions called kernels kernel can be a funtion or

a full program invoked by CPU. IT is executed an N

number of times in parallel on GPU by using N threads.

Each thread that executes the kernel is presented a unique

thread ID that is accessible within the meat through the

built-in threadIdx variable.. CUDA grants shared memory

and synchronization among the threads. CUDA threads

may access data from multiple memory spaces during

their performance. Each thread has private local memory.

Then the number of threads per block, i.e., each thread

block has shared memory visible to all threads of the

block and with the same lifetime as the cube. .All the

threads of blocks per grid have access to the same global

memory.There are two additional read-only memory

spaces accessible by all threads i.e. texture and constant

memory spaces.Texture memory is read from kernels

using the device functions described in Texture Functions.

Reading data from texture or surface memory instead of

global memory can have several performance

benefits.Texture memory also offers different addressing

modes, as well as data filtering, for some specific data

formats.

Parallel Algorithms

Agrawal& Shafer [11] was staged the first parallel version

of Aprior. Three different parallel versions of the Apriori

method are given in [11]. Among these methods, the

database is supposed to be distributed horizontally among

the central processing units. The foremost method is

called Count Distribution (CD), which is a straight-

forward parallelization of Apriori. Each processor works

out the partial backing of all candidates itemsets from its

local database partition. At the end of each iteration, the

processors exchange their partial supports to measure the

global supports. The second method is called Data

Distribution (DD), which partitions the candidate itemsets

into disjoint sets and attributes them to different CPUs. In

the DD method, each processor has to skim the full

database (not only its local partition) in all iterations, to

measure the global livelihood. Thusly, the DD method

involves a high communication overhead. The Candidate

Distribution algorithm follow the same strategy applied in

Data Distribution, but it selectively replicates the dataset,

the reason behind that each processor proceeds

independently. The local component of the dataset is still

scanned in every iteration. Among the three parallel

versions of Apriori, the CD method is reported to perform

the best. Many algorithms can use one of the above

strategy to parallelize it. Like AprioriDP[9] was dynamic

and triangle based method to find frequent2-itemset.

The rest of this paper is structured as follows. Part 2

describes a survey of multi-core and GPU accelerated

parallelization of the FIM algorithms. Section 3 shows the

comparison between those algorithms and last section

shows the conclusion.

II. LITERATURE SURVEY

In [6],[7],[14] presented were three modified versions of

the most basic Apriori algorithm, adapted for use with

GPU:Apriori TBI, Apriori PBI and GPApriori.

2.1 PBI & TBI algorithm[6]

Wenbun Fang and Mian Lu.[6] group of authors proposed

Apriori[10] and was first time addressed parallel version

of FIM[4]. Two different approaches are pure bitmap and

trie-based bitmap.Transactions and itemsets are encoded

in bitmap and transfer in GPU but it will degrade the

performance. Firstly, traditional approach (1) was used

and nowadays vertical representation (2) is used and

demonstrate speed factor which is higher than traditional

 © 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100205 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1025

one. PBI-GPU is faster in dense dataset. TBI-GPU is

better in sparse dataset. PBI stores itemsets in a bitmap

structure and look up table is used to avoid counting the

number of 1’s in integers, so table stores the mapping of

integer in its binary representation. TBI uses a tree

structure to store itemsets and adopts co-processing

scheme [6].

(1) (2)

Fig.2 dataset[6]

PBI-GPU vs TBI-GPU[12] comparison shows the effect

of dfferent itemset representations - bitmap-based and trie-

based. PBI-GPU and TBI-GPU invokes exactly the same

support counting procedure on the GPU. The performance

di®erence only comes from the candidate generation. The

dense data set Chess has very few items (75 in total),

hence the bitmap representation of itemsets for PBI-GPU

is of small size. On the other hand, the sparse dataset

Retail has many items (16469 in total), so PBI-GPU

should process large bitmap of itemsets. Thus, the number

of items determines the performance of PBI-GPU's

candidate generation. Therefore, PBI-GPU outperforms

TBI-GPU on denser data set, due to the smaller size of

bitmap representation for itemsets, while TBI-GPU is

better on the sparse dataset. [12].

2.2 GPAprioriAlgorithm[7]

Fan Zhang, Yan Zhang, and J. Bakos[7] proposed GPU

accelerated traditional Apriori implementation which is

known as GPApriori. It adopts the same methods, like

Support Counting, Candidate Generation and Candidate

Pruning. Other frequent itemset mining algorithms either

use vertical representation or horizontal representation but

in GPApriori, they have introduced new Bitset

representation of complete database.Thebitset

representation requires more memory space but it is more

suitable for designing a parallel set join operation, which

is better suited for GPU.”Botwise and” operations

performed for joining two transaction list.

In support counting process is based on a complete

intersection in which, candidates are copied from main

memory to graphic memory by host code, the GPU uses

bitwise intersections on their vertical transaction lists, and

are replicated back to main memory. Compared to the

equivalent class clustering method, complete intersection

adds computational complexity in order to reduce memory

usage, but in the GPU cost of adding logic operations is

lower. Carrying out of support counting in codes to

ensure that coalesced memory access it aligned vertical

list into 64 Byte. As bitset representation is used, it needs

to enumerate the number of 1. The inbuilt code function

pops (population count) is applied to calculate support

count and store it in graphics memory in the form of

vectors which are transferred to main memory. A parallel

summation reduction algorithm [13] is used to tally all the

support values recursively in its first constituent.

2.3 Frontier Expansion[14]

Fan Zhang, Yan Zhang, Jason D. Bakos[14] describe a

new parallel Frequent Itemset Mining algorithm

called “Frontier Expansion,” an improved data-parallel

algorithm derived from the Equivalent Class

Clustering(Eclat) method, in which a partial breadth-first

search is utilized. It has two main aims, firstly to finely

parallelize Eclat’s computational kernel for GPU

acceleration and second is to achieve a dynamic tradeoff

between performance and memory requirement, setting

aside for a large data set to be processed with limited

memory.

Algorithm utilizes Frontier stack for candidate

generations. IT rapidly expands stack by consuming old,

generating fresh and deleting infrequent candidates from

stock for support counting, the frequency of new

candidates is computed by intersecting the best vertical

transaction list on the GPU. By visiting a big number of

CUDA memory allocations and de-allocations, vertical list

is generated and discarded. It allocates space for the upper

limit number of vertical lists of GPU and stories free list

addresses in a stack.a stack. When the program needs a

free vertical list, it pops and returns an address stored.This

method generates candidate of size K if candidates size of

K-1 has the same prefix else they aren’t in same class.

In frontier expansion during the expansion, the support for

each of a set of new candidates are countered by GPU

kernel and those meet the necessity of minimum support

are forced back into stack. Candidates are sorted

descendently by they support values and procedure is

replicated until the heap is empty.

breadth first search will process more candidates in

support counting phase and maximize the degree of data

parallelism but the trade off is that the expansion requires

a larger memory space.

2.4 Tree projection[8]

George Teodoro Nathan Mariano Wagner Meira Jr.

Renato Ferreira[8] Describes Tree projection based

frequent itemset mining algorithm. It is made up of core

tree data structures, which is used to guide mining

operations. Nodes assumes a lexicographic ordering

 © 2014 IJIRT | Volume 1 Issue 5 | ISSN : 2349-6002

IJIRT 100205 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1026

Table-1 Comparison of Algorithms[6],[7],[8],[14],[15]

among frequent itemsets in a database, which is built at

run-time Depth represents the size or levels of

itemset.Tree projection[8] employs a breadth-first

strategy. Two parallelization methods for building tree

are: (i) the Transaction processing, processing the

transactions in parallel on the available hardware, each

counting matrix of the nodes at level k- 1 is updated.; (ii)

the node level parallelism, where each node being

expanded is assigned to a different processor and updating

its node matrix.

They demonstrate various locking techniques like node

level, tree level to avoid race condition in the multi core

CPU. If the node processing will create, load imbalance

and needs more memory because matrices need to be

updated concurrently in memory which is infeasible in

many instances. On the other end If transaction processing

is used, then execution time is controlled using an add

count method that processes the transactions making

interesting candidate for parallelism and so tree node

expanded among parallel processor and synchronized

accesses. Some other critical problem find is how to

efficiently represent a lot of transactions on the GPU.

And then they have introduced novel and compact vector

base database representation.

2.5 Dynamic counting itemset [15]

Claudio Silvestri, Salvatore Orlando Universit`aCa’

FoscariVenezia [15] group of authors proposed gpuDCI,

parallel version of Dynamic Itemset Counting [8]. DCI is

a multi-strategy algorithm characterized by several phases,

each exploiting a different strategy. The key idea, is all the

subsets of a frequent set must be frequent. And so, the

algorithm performs several iterations, starting with one

Item patterns and increasing the size of searches, pattern

at each iteration. DCI adopts scanning the database by

transaction, using specific direct-count data structure to

update the counters of the itemsets, After that when the

number of surviving transactions and items allow vertical

representation of the pruned dataset in memory. But later

on DCIswitches to Intersection phase is more efficient as

it has to deal with higher number of candidates than the

Direct Count phase. It applies a bitwise data structure.

Gpu-DCI examined the transaction wise and candidate

wise strategies. Count phase would hinder the efficient

exploitation of GPUs during this phase.Transaction wise

parallelism was carried out by increasing stride with block

id and thread id while in candidate parallelism stride with

only thread id. Another novel approach is two level

reductions, local reduction performed by each

multiprocessor, data fetched from shared memory which

is already exist in it. Global reduction may cause more

penalty because data must be fetched from the counters

which is residing in global memory.

III. COMPARISON

Apriori and Eclat iteratively generate k+1-sized frequent

item sets by joining frequent k-sized item sets. This step is

called candidate generation. After making each new set of

candidates, the algorithm scans the transaction database to

estimate the number of occurrences of each nominee. This

amount is called support counting. The main difference

between Apriori and Eclat is the manner they represent

candidate and transaction data and the decree that they

skim the tree structure that stores the candidates [7].

Apriori uses breath search technique and can be

parallelized by parallel computation, however, results in

extremely high memory usage [14]. Eclat uses depth

search technique requires less memory if the utmost are

small in number. FPGrowth has greater performance than

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN: 2349-6002

IJIRT 100048 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1027

Apriori and Eclat but it requires high memory that

prevents it being employed by large data sets. For high

threshold value Apriori out performs FPGrowth[14].

Here we have chosen five different parameters and five

algorithms identify the functionality. In kind of database

parameter all GPU versions use bitmap representations

because of heterogeneous environment, but tree projection

based method vector representations. By comparing both

the representations bitmap is complete matrix and

therefore required more storage than a vector.

Second parameter shows algorithm can use more than one

GPU. The first PBI & TBI and gpuDIC can't utilize the

more than one GPU. Whereas for Frontier Expansion

apply the old concept to parallelize, but even so it

improves all over result in their experimentations.

Third parameter shows that from which algorithm they

proposed the improvement in their clause. Frontier

expansion and tree projection base proposed methods

improve mainly Éclat and FPGrowth. Here GPApriori

traditional apriori version. But here specific to DIC

(dynamic itemset counting) they proposed parallel version

gpuDIC.

Fourth parameter speaks tree base operation performed on

CPU and Bitwise AND operation performed on GPU. As

tree has unpredictable memory access and so GPU is not

applicable. So candidate generation by tree like techniques

that causes to be done on the CPU, in other word tree

structure has to be managed by the CPU, then generated

candidate move to the GPU memory.

The final parameter in the table is parallelization strategy.

There are two main strategies, i.e. Transaction and

candidate strategy to be used. gpuDIC and Tree

projection utilize both the strategies and discuss that

transaction wise parallelism is more suitable if we have

enough resources. Whereas candidate wise parallelism

gives unexpected outcome and also that it’s not always

outperform the transaction wise parallelism.

IV. CONCLUSION AND FUTURE WORK

Throughout the survey, we have spoken about various

ways to solve frequent itemset mining problem. All the

algorithms mentioned in the survey provide the same idea

with a priori that can be date generation, support counting

and candidate pruning.g. Implementing GPApriori

algorithm and try to and reduce the items and increase its

efficiency.

REFERENCES

[1]. R. Agrawal And R. Srikant. Fast Algorithms For

Mining Association Rules.

 IBM Research Report RJ9839, IBM Almaden Research

Center, San Jose, California, June 1994.

[2]. Sheila A. Abaya, “Association Rule Mining Based On

Apriori Algorithm In Minimizing Candidate

Generation”,In:International Journal Of Scientific &

Engineering Research Volume 3, Issue 7, July-2012

[3]. M. J. ZakiAnd K. Gouda. Fast Vertical Mining Using

Diffsets.In Proc. SIGKDD. 2003. P. 326-335

[4]. J. Han, H. Pei, And Y. Yin. Mining Frequent Patterns

Without Candidate Generation.In SIGMOD. 2000. P. 1-12

[5]. R. Agrawal, T. Imielinski, And A. Swami. Mining

Association Rules Between Set Of Items In Large

Databases. In Proceeding Of The 1993 ACM SIGMOD

International Conference On Management Of Data, Pages

207–216, May 1993

[6.] Mian Lu Xiangye Xiao Chi Kit Lam Philip Yang

Bingsheng He Qiongluo Pedro V. Sander Wenbin Fang,

Ka Keung Lau And Keyang.Parallel Data Mining On

Graphics Processors. Technical Report HKUST-CS08-07,

October 2008.

[7] Fan Zhang, Yan Zhang, And J. Bakos. Gpapriori: Gpu-

Accelerated Frequent Itemset Mining. In 2011 IEEE

International Conference On Cluster Computing

(CLUSTER), Pages 590–594, 2011. Doi: 10.1109

/CLUSTER. 2011.61.

[8] George Teodoro Nathan Mariano Wagner Meira Jr.

Renato Ferreira.TreeProjectionbased Frequent Itemset

Mining On Multi-Core Cpus And Gpus. 22nd

International Symposium On Computer Architecture And

High Performance Computing, Pages 47 – 54,

NOVEMBER 2010. Doi: DOI10.1109/SBAC-

PAD.2010.15.

[9]Dharmeshbhalodia, K. M. Patel ,Chhaya Patel, An

Efficient Way To Find Frequent Pattern With Dynamic

Programming Approach ,NIRMA UNIVERSITY

INTERNATIONAL CONFERENCE ON

ENGINEERING, Nuicone-2013, 28-30 NOVEMBER,

2013

[10] NVIDIA CORPORATION, CUDA Programming

Guide, Http://Developer.Nvidia.Com/Cuda

[11]Agrawal, R. And Shafer, J. 1996. Parallel Mining Of

Association Rules.In IEEE Trans. On Knowledge And

Data Engg., 8(6):962-969.

 © 2014 IJIRT | Volume 1 Issue 4 | ISSN: 2349-6002

IJIRT 100048 INTERNATONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1028

[12]Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng

He1, Qiongluo.Frequentitemset Mining On Graphics

Processors.

[13] Nvidia. Data Parallel Algorithm In CUDA SDK

Available From:

Http://Developer.Download.Nvidia.Com.

[14]Yan Zhang Fan Zhang And Jason D. Bakos.

Accelerating Frequent Itemset Mining On Graphics

Processing Units. J Supercomput, Pages 94–117,

NOVEMBER 2013. Doi: 10.1007/S11227-013-0887- X.

[15] Salvatore Orlando Universit A CaFoscariVenezia

Claudio Silvestri. Exploiting GpusIn Frequent Itemset

Mining. 20th Euromicro International Conference On

Parallel, Distributed And Network-Based Processing,

Pages 416–425, 2012. Doi: DOI10.1109/ PDP.2012.94.

http://developer.download.nvidia.com/

