dc.contributor.author |
Vaidya, S. K. |
|
dc.contributor.author |
Ajan, P. D. |
|
dc.date.accessioned |
2024-11-21T06:14:16Z |
|
dc.date.available |
2024-11-21T06:14:16Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
S. K. Vaidya and P. D. Ajan, On restrained edge dominating set of graphs,Malaya Journal of Matematik, Vol. 7, No. 1, 104-107, 2019 |
en_US |
dc.identifier.uri |
http://10.9.150.37:8080/dspace//handle/atmiyauni/1832 |
|
dc.description.abstract |
For a graph G = (V, E), a subset D of E is restrained edge dominating set of G if every edge not in D is adjacent
to an edge in D as well as an edge in E − D. The restrained edge domination number of G, denoted by γre(G)
is the minimum cardinality of a restrained edge dominating set of G. Here, we characterize restrained edge
dominating set and also investigate restrained edge domination number of some wheel related graphs. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Malaya Journal of Matematik |
en_US |
dc.subject |
Dominating set |
en_US |
dc.subject |
restrained dominating set |
en_US |
dc.subject |
restrained edge dominating set |
en_US |
dc.subject |
restrained edge |
en_US |
dc.subject |
domination number. |
en_US |
dc.title |
On restrained edge dominating set of graphs |
en_US |
dc.type |
Article |
en_US |