DSpace Repository

On total domination and total equitable domination in graphs

Show simple item record

dc.contributor.author Vaidya, S. K.
dc.contributor.author Parmar, A. D.
dc.date.accessioned 2024-11-21T10:47:26Z
dc.date.available 2024-11-21T10:47:26Z
dc.date.issued 2019
dc.identifier.citation Vaidya, S. K., & Parmar, A. D. (2018). On total domination and total equitable domination in graphs. Malaya Journal of Matematik, 6(02), 375-380. en_US
dc.identifier.uri http://10.9.150.37:8080/dspace//handle/atmiyauni/1888
dc.description.abstract A dominating set D of a graph G is called total if every vertex of V (G) is adjacent to at least one vertex of D, equivalently if N(D) = V (G) then D is called total dominating set. A dominating set D is called total equitable dominating set if it is total and for every vertex in V (G) − D there exists a vertex in D such that they are adjacent and difference between their degrees is at most one. The minimum cardinality of a total (total equitable) dominating set is called total (total equitable) domination number of G which is denoted by γt (G)(γe t (G)). We have investigated exact value of these parameters for some graphs. en_US
dc.language.iso en en_US
dc.publisher Malaya Journal of Matematik en_US
dc.subject Dominating set en_US
dc.subject total dominating set en_US
dc.subject equitable dominating set en_US
dc.title On total domination and total equitable domination in graphs en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account