Abstract:
An alkaline protease gene of Bacillus lehensis JO-26 from saline desert, Little Rann of Kutch, was cloned and expressed in Escherichia coli BL21 (DE3). A 1,014-bp ORF encoded 337 amino acids. The recombinant protease (APrBL) with Asp 97, His 127, and Ser 280 forming catalytic triad belongs to the subtilase S8 protease family. The gene was optimally expressed in soluble fraction with 0.2 mM isopropyl b-D-thiogalactopyranoside (IPTG), 2% (w/v) NaCl at 28 C. APrBL, a monomer with a molecular mass of 34.6 kDa was active over pH 8–11 and 30 C..70 C, optimally at pH 10 and 50 C. The enzyme was highly thermostable and retained 73% of the residual activity at 80 C up to 3 h. It was significantly stimulated by sodium dodecyl sulfate (SDS), Ca2C, chloroform, toluene, n-butanol, and benzene while completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and Hg2C. The serine nature of the protease was confirmed by its strong nhibition by PMSF. The APrBL gene was phylogenetically close to alkaline elastase YaB (P20724) and was distinct from the well-known commercial proteases subtilisin Carlsberg (CAB56500) and subtilisin BPN0 (P00782). The structural elucidation revealed 31.75% a-helices, 22.55% b-strands, and 45.70% coils. Although high glycine and
fewer proline residues are a characteristic feature of the cold-adapted enzymes, the
similar observation in thermally active APrBL suggests that this feature cannot be solely
responsible for thermo/cold adaptation. The APrBL protease was highly effective as a
detergent additive and in whey protein hydrolysis