Abstract:
For a connected graph of order n, the metric basis of a G is a smallest set {} k v vv S,,, 2
=1 of vertices of G such that for vertex, G u∈ the ordered k-tuples of are all distinct.distances {()()()()} k vud vud vud vud,,,,,,,, 3 2 1 The metric dimension of G, denoted as (), dim G is the cardinality of a metric basis for G. In the present work we investigate metric dimension of intersection graphs and annihilator ideal graphs of commutative ring R