dc.contributor.author |
Duhan, Amit |
|
dc.contributor.author |
Kumar, Manoj |
|
dc.contributor.author |
Rathee, Savita |
|
dc.contributor.author |
Swami, Monika |
|
dc.date.accessioned |
2025-01-01T10:45:08Z |
|
dc.date.available |
2025-01-01T10:45:08Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Duhan, Amit, Kumar, Manoj, Rathee, Savita & Swami, Monika (2023). Best Proximity Point for Generalized Rational \alpha_s Proximal Contraction. Journal of Harbin Engineering University, 44(10), 1366-1384. |
en_US |
dc.identifier.issn |
1006-7043 |
|
dc.identifier.uri |
http://10.9.150.37:8080/dspace//handle/atmiyauni/2188 |
|
dc.description.abstract |
Best proximity point problem in S-M(S-metric) spaces is thought to be a generalization of a G- metric spaces. In this study, we provide proof a best proximity points theorem of αs−Proximal mapping admissible and its several types by generalizing the theory of α−admissible mapping in S-M spaces. We present generalized rational αs−Proximal contraction type mappings and investigate the best proximity point in S-M spaces. In addition, we provide an illustration to show how the result can be used. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Journal of Harbin Engineering University |
en_US |
dc.relation.ispartofseries |
;44(10), 1366-1384 |
|
dc.subject |
Best Proximity Point |
en_US |
dc.subject |
S-M space |
en_US |
dc.subject |
Proximal contraction |
en_US |
dc.subject |
Generalized rational αs−Proximal contraction |
en_US |
dc.title |
Best Proximity Point for Generalized Rational \alpha_s Proximal Contraction |
en_US |
dc.type |
Article |
en_US |