| dc.contributor.author | Vaidya, S.K. | |
| dc.contributor.author | Ajani, P.D. | |
| dc.date.accessioned | 2023-05-01T06:35:01Z | |
| dc.date.available | 2023-05-01T06:35:01Z | |
| dc.date.issued | 2020 | |
| dc.identifier.citation | Vaidya, S. K., & Ajani, P. D. (2020). On restrained edge dominating set of graphs. Malaya Journal of Matematik (MJM), 8(1, 2020), 28-31. | en_US |
| dc.identifier.issn | 2321-5666 | |
| dc.identifier.uri | http://10.9.150.37:8080/dspace//handle/atmiyauni/829 | |
| dc.description.abstract | For a graph G = (V,E), a subset D of E is restrained edge dominating set of G if every edge not in D is adjacent to an edge in D as well as an edge in E −D. The restrained edge domination number of G, denoted by γre(G) is the minimum cardinality of a restrained edge dominating set of G. Here, we characterize restrained edge dominating set and also investigate restrained edge domination number of some wheel related graphs. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Malaya Journal of Matematik | en_US |
| dc.subject | Dominating set | en_US |
| dc.subject | Restrained dominating set | en_US |
| dc.subject | Restrained edge dominating number | en_US |
| dc.subject | Restrained edge dominating set | en_US |
| dc.title | On restrained edge dominating set of graphs | en_US |
| dc.type | Article | en_US |